Skip to main content

Fully Complex Multiplicative Neural Network Model and Its Application to Channel Equalization

  • Chapter
Advances in Neural Network Research and Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 67))

Abstract

In this paper a novel fully complex multiplicative neural network (MNN) algorithm is proposed to extract Quadrature Amplitude Modulation (QAM) signals when passed through a non linear channel in the presence of noise. The inputs, weights, activation functions and the output of the proposed MNN are complex valued. The training algorithm for the multilayer feed forward fully complex MNN is derived. The equalizer is tested on 4, 16 and 32 QAM signals and compared with split complex feed forward MNN equalizer. The proposed equalizer is implemented on nonlinear and nonminimum phase stationary channel. The fast converging algorithm gives lower bit error rate performance even in the presence of substantial noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patra, J.C., Beng, P.W., Chaudhari, N.S., Das, A.: Nonlinear Channel Equalization with QAM Signal using Chebyshev Artificial Neural Network. In: Proc. International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, pp. 3214–3219 (2005)

    Google Scholar 

  2. Chen, S., Mulgrew, B., Grant, P.M.: A Clustering Technique for Digital Communications Channel Equalization using Radial Basis Function Networks. IEEE Trans. Neural Netw. 4(4), 570–579 (1993)

    Article  Google Scholar 

  3. Kechriotis, G., Zervas, E., Manolakos, E.S.: Using Recurrent Neural Networks for Adaptive Communication Channel Equalization. IEEE Trans. Neural Netw. 5(2), 267–278 (1994)

    Article  Google Scholar 

  4. You, C., Hong, D.: Adaptive Equalization using the Complex Backpropagation Algorithm. In: IEEE International Conference on Neural Networks, Washington, DC, USA, June 3-6, vol. 4, pp. 2136–2141 (1996)

    Google Scholar 

  5. Chen, S., Mclaughlin, S., Mulgrew, B.: Complex-valued Radial Basis Function Network, Part II: Application to Digital Communications Channel Equalization. Signal Processing 36, 165–188 (1994)

    Article  Google Scholar 

  6. Cha, I., Kassam, S.A.: Channel Equalization using Adaptive Complex Radial Basis Function Networks. IEEE J. Sel. Area Communication 13(1), 122–131 (1995)

    Article  Google Scholar 

  7. Deng, J., Sundararajan, N., Saratchandran, P.: Communication Channel Equalization using Complex-valued Minimal Radial Basis Function Neural Networks. IEEE Transactions on Neural Networks 13(3), 687–697 (2002)

    Article  Google Scholar 

  8. Ming-Bin, L., Guang-Bin, H., Saratchandran, P., Sundararajan, N.: Fully Complex Extreme Learning Machine. Neurocomputing 68, 306–314 (2005)

    Article  Google Scholar 

  9. Giles, C.L., Maxwell, T.: Learning, Invariance and Generalization in High-order Neural Networks. Applied Optics 26(23), 4972–4978 (1987)

    Article  Google Scholar 

  10. Schmitt, M.: On the Complexity of Computing and Learning with Multiplicative Neurons. Neural Computing 14(2), 241–301 (2002)

    Article  MATH  Google Scholar 

  11. Yadav, R.N., Kalra, P.K., John, J.: Time Series Prediction with Single Multiplicative Neuron Model. Applied Soft Computing 7, 1157–1163 (2007)

    Article  Google Scholar 

  12. Yadav, R.N., Singh, V., Kalra, P.K.: Classification using single neuron. In: IEEE Int. Conf. on Industrial Informatics, Banff, Alberta, Canada, August 21-24, pp. 124–129 (2003)

    Google Scholar 

  13. Georgiou, G., Koutsougeras, C.: Complex Domain Backpropagation. IEEE Trans. Circuits Systems II: Analog Digital Signal Process. 39(5), 330–334 (1992)

    Article  MATH  Google Scholar 

  14. Kim, T., Adali, T.: Fully Complex Backpropagation for Constant Envelope Signal Processing. In: IEEE Signal Processing Society Workshop, Sydney, Australia, December 11-13, pp. 231–240 (2000)

    Google Scholar 

  15. Kim, T., Adali, T.: Complex Backpropagation Neural Network using Elementary Transcendental Activation Functions. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, USA, May 7-11, vol. 2, pp. 1281–1284 (2001)

    Google Scholar 

  16. Kavita, B., Yadav, R.N., Shrivastava, S.C.: Complex Channel Equalization using Polynomial Neuron Model. In: Proc. IEEE 3rd Int. Symposium on Information Technology, Kuala Lumpur, Malaysia, August 26-29, pp. 771–775 (2008)

    Google Scholar 

  17. Kavita, B., Yadav, R.N., Shrivastava, S.C., Singh, K.V.P.: A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model. International J. of Electronics, Circuits and Systems 3(3), 150–153 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burse, K., Yadav, R.N., Shrivastava, S.C. (2010). Fully Complex Multiplicative Neural Network Model and Its Application to Channel Equalization. In: Zeng, Z., Wang, J. (eds) Advances in Neural Network Research and Applications. Lecture Notes in Electrical Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12990-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12990-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12989-6

  • Online ISBN: 978-3-642-12990-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics