Skip to main content

Friction Behavior in Microsystems

  • Chapter
  • First Online:
Design and Manufacturing of Active Microsystems

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

In active microsystems, low lateral propulsive forces act under high contact pressures, thereby requiring a low friction coefficient ??for successful operation. The maximum acceptable friction coefficient is determined by the available driving forces. This chapter focuses on the reduction of microfriction at the contacting interfaces, the use of micropatterned surfaces, and the realization of microguidance. For an investigation on flat-flat-microcontact, specific test equipment was built and used. Physical Vapor Deposition (PVD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) were used for applying thin films. In contrast to macroscopic examples, microfriction under single asperity contact correlates to the applied normal force. At a low load range from 50–100?N, the friction coefficient decreases with increasing load. Above a critical value the friction coefficient increases with increasing load due to inelastic effects. Under multi asperity microcontact, the friction coefficient is dependent on the contact pressure. To tailor the resulting friction coefficients, the influence of different micropatterns are studied. For carbon based films the friction coefficient ??can be decreased below 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arfsten J, Kampen I, Kwade A (2009) Mechanical testing of single yeast cells in liquid environment: Effect of the extracellular osmotic conditions on the failure behavior. International journal of materials research 100(7):978–983

    Google Scholar 

  2. Bandorf R, Lüthje H, Schiffmann K, Staedler T, Wortmann A (2002) Sub-micron coatings with low friction and wear for micro actuators. Microsystem Technologies 8(1):51–54

    Article  Google Scholar 

  3. Bandorf R, Lüthje H, Henke C, Wiebe J, Sick JH, Küster R (2005) Different carbon based thin films and their microtribological behaviour in MEMS applications. Surface and Coatings Technology 200

    Google Scholar 

  4. Bhushan B (1999) Handbook of Micro/Nanotribology. CRC Press LLC

    Google Scholar 

  5. Denkena B, Li J (2005) Untersuchung einer magnetischen Mikroführung– Modellierung und Simulation. wt Werkstattstechnik online 5

    Google Scholar 

  6. Denkena B, Li J, Kopp D (2004) An aerostatic linear guidance for microsystems. Annuals of the German Academic Society for Production Engineering (WGP) XI/2

    Google Scholar 

  7. Feldmann M (2007) Technologien und Applikationen der UVTieflithographie: Mikroaktorik, Mikrosensorik und Mikrofluidik. Shaker

    Google Scholar 

  8. Feldmann M, Ruffert C, Gatzen HH, Büttgenbach S (2005) Fertigung von Funktionskomponenten für elektromagnetische Mikroaktoren. In: Kolloquium Mikroproduktion – Fortschritte, Verfahren, Anwendungen

    Google Scholar 

  9. Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences pp 300–319

    Google Scholar 

  10. Johnson K (1987) Contact mechanics. Cambridge Univ Pr

    Google Scholar 

  11. Kumar S, Cho D (1990) A proposal for electrically levitating micromotors. Sensors and Actuators A 24

    Google Scholar 

  12. Mehregany M, Nagarkar P, Senturia S, Lang J (1990) Operation of microfabricated harmonic and ordinary side-drive motors. In: Proceeding 3rd Annual IEEE Microelectromechanical Systems Workshop

    Google Scholar 

  13. Paulkowski D (2009) Strukturelle Eigenschaften von dünnen amorphen Kohlenstoffschichten und ihre Auswirkungen auf Mikrotribologie und Deformationsverhalten. Fraunhofer Verlag, Dissertation

    Google Scholar 

  14. Paulkowski D, Bandorf R, Schiffmann K, Bräuer G (2009) Friction on flat-flat micro contacts coated with amorphous carbon. In: Proceedings of GfT Tribologie Fachtagung, vol 2, p 51

    Google Scholar 

  15. Phataralaoha A, Büttgenbach S (2004) Microscopic friction force measuring system for the investigation of micro components. In: 4th Euspen Conference

    Google Scholar 

  16. Phataralaoha A, Büttgenbach S (2005) A novel design and characterization of micro probe based on a silicon membrane for dimensional metrology. In: Eurosensors XIX

    Google Scholar 

  17. Phataralaoha A, Büttgenbach S (2006) A novel design and characterization of a monolithic three axial micro probe for dimensional metrology. In: Proceedings of APCOT06

    Google Scholar 

  18. Phataralaoha A, Büttgenbach S, Schiffmann K, Sick JH, Bandorf R, Küster R (2005) Tribologische lineare Mikroführungen. In: Mikrosystemtechnik Kongress

    Google Scholar 

  19. Pornnoppadol P (2004) 3D-Mikrotaster mit piezoresistiven Elementen. Shaker

    Google Scholar 

  20. Riedo E, L´evy F, Brune H (2002) Kinetics of capillary condensation in nanoscopic sliding friction. Physical review letters 88(18):185,505

    Google Scholar 

  21. Schmidt M, Wortmann A, Lüthje H, Büttgenbach S (2001) Novel equipment for friction force measurement on MEMS and microcomponents. In: Proceedings of SPIE, vol 4407, p 158

    Article  Google Scholar 

  22. Staedler T (2001) Mechanische und tribologische Charakterisierung dünner Schichten mit Hilfe rastersondenbasierter Verfahren. Fraunhofer-IRB-Verl.

    Google Scholar 

  23. Staedler T, Schiffmann K (2001) Micromechanical and microtribological properties of thin CNx and DLC coatings. Advanced engineering materials(Print) 3(5):333–337

    Article  Google Scholar 

  24. Sundararajan S (2001) Micro/nanoscale tribology and mechanics of components and coatings for MEMS. The Ohio State University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Büttgenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Phataralaoha, A., Bandorf, R., Bräuer, G., Büttgenbach, S. (2011). Friction Behavior in Microsystems. In: Büttgenbach, S., Burisch, A., Hesselbach, J. (eds) Design and Manufacturing of Active Microsystems. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12903-2_6

Download citation

Publish with us

Policies and ethics