Skip to main content

Energy Portfolio Optimization for Electric Utilities: Case Study for Germany

  • Chapter
  • First Online:
Energy, Natural Resources and Environmental Economics

Part of the book series: Energy Systems ((ENERGY))

Abstract

We discuss a portfolio optimization problem occurring in the energy market. Energy distributing public services have to decide how much of the requested energy demand has to be produced in their own power plant, and which complementary amount has to be bought from the spot market and from load following contracts. This problem is formulated as a mixed-integer linear programming problem and implemented in GAMS. The formulation is applied to real data of a German electricity distributor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not consider selling in the auction market in our model.

  2. 2.

    Weekend-base load contracts specify the delivery for 48 h, starting at Saturday 0:00 a.m. and ending on Sunday 12:00 p.m.; peak load contracts for the weekends are not offered.

  3. 3.

    For the real data of Stadtwerke Saarlouis, the running time of the continuous model compared to the binary model was less than 40%, it needed 45% of the iterations and 60% of the branching nodes.

  4. 4.

    Recognize that for this argument to be correct, we need also that the heuristics treat both the binary and the continuous case equivalently as well as factional solutions for the variables χ t S and χ t I are not rejected by the heuristics and during the branching process. However, just setting the branching priorities low, i.e. to value 10, has already a significant impact. For our case of the real data, the running time decreased by 30%.

References

  • Arroyo, J., & Conejo, A. (2000). Optimal response of a thermal unit to an electricity spot market. IEEE Transactions on Power Systems, 15(3), 1098–1104.

    Article  Google Scholar 

  • Atamtürk, A., & Savelsbergh, M. (2005). Integer-programming software systems. Annals of Operations Research, 140(1), 67–124.

    Article  Google Scholar 

  • Baldick, R. (1995). The generalized unit commitment problem. IEEE Transactions on Power Systems, 10(1), 465–475.

    Article  Google Scholar 

  • Beale, E., & Tomlin, J. (1969). Special facilities in a general mathematical programming system for non-convex problem using ordered sets of variables. In 5th International Conference on Operation Research (pp. 447–454). North-Holland.

    Google Scholar 

  • Brand, H., Weber, C., Meibom, P., Barth, R., & Swider, D. J. (2004). A stochastic energy market model for evaluating the integration of wind energy. In Tagungsband der 6. IAEE European Conference 2004 on Modelling in Energy Economics and Policy. Zurich.

    Google Scholar 

  • Bruce, A. M., Meeraus, A., van der Eijk, P., Bussieck, M., Dirkse, S., & Steacy, P. (2009). McCarl GAMS User Guide. GAMS Development Corporation.

    Google Scholar 

  • Bundesministerium für Wirtschaft und Technologie (2004). Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG).

    Google Scholar 

  • Bundesministerium für Wirtschaft und Technologie (2006). Bundeskabinett beschließt Entlastungen im Erneuerbare-Energien-Gesetz (EEG). Berlin.

    Google Scholar 

  • Carrion, M., & Arroyo, J. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378.

    Article  Google Scholar 

  • Chowdhury, S., & Rahman, B. H. (1990). A review of recent advances in economic dispatch. IEEE Transactions on Power Systems, 5(4), 1248–1259.

    Article  Google Scholar 

  • Dhillon, K., & Dhillon, J. S. (2004). “Power system optimization”. India: Prentice Hall.

    Google Scholar 

  • Dillon, T. S., Edwin, K. W., Kochs, H.-D., & Taud, R. J. (1978). Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Apparatus and Systems, PAS-97(6), 2154–2166.

    Google Scholar 

  • EEX - European Energy Exchange (2007). EEX Product Information Power. Leipzig.

    Google Scholar 

  • Erdmann, G., & Zweifel, P. (2007). Energieökonomik - Theorie und Anwendungen. Berlin: Springer.

    Google Scholar 

  • European Commission (2007). Germany - Energy mix fact sheet.

    Google Scholar 

  • GAMS (2009). The GAMS model library index.

    Google Scholar 

  • Gröwe-Kuska, N., & Römisch, W. (2005). Applications of stochastic programming. In S. W. Wallace & W. T. Ziemba (Eds.), Stochastic unit commitment in hydro-thermal power production planning, Chap. 30, MPS-SIAM Series in Optimization.

    Google Scholar 

  • Gröwe-Kuska, N., Kiwiel, K. C., Nowak, M. P., Römisch, W., & Wegner, I. (2002). Decision making under uncertainty: energy and power. In C. Greengard, & A. Ruszczynski (Eds.), IMA Volumes in Mathematics and its Applications (Vol. 128, pp. 39–70), Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation. New York: Springer.

    Google Scholar 

  • Heuck, K., & Dettmann, K. -D. (2005). Elektrische Energieversorgung: Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis (6th ed.). Vieweg.

    Google Scholar 

  • Hobbs, B., Stewart, W., Bixby, R., Rothkopf, M., ONeill, R., and Chao, H. -p. (2002). The next generation of electric power unit commitment models, chapter why this book? New capabilities and new needs for unit commitment modeling (pp. 1–14).

    Google Scholar 

  • Kallrath, J., & Wilson, J. M. (1997). Business optimisation using mathematical programming. Houndmills, Basingstoke, UK: Macmillan.

    Google Scholar 

  • LINDO Systems (2003). Application survey paper: electrical generation unit commitment planning.

    Google Scholar 

  • Madlener, R., & Kaufmann, M. (2002). Power exchange spot market trading in Europe: theoretical considerations and empirical evidence. OSCOGEN Deliverable 5.1bMarch; Contract No. ENK5-CT-2000-00094.

    Google Scholar 

  • Madrigal, M., & Quintana, V. (2000). An analytical solution to the economic dispatch problem. IEEE Power Engineering Review, 20(9), 52–55.

    Article  Google Scholar 

  • Nowak, M. P., & Römisch, W. (2000). Stochastic lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Annals of Operations Research, 100(1), 251–272.

    Article  Google Scholar 

  • Österreichische Elektrizitätsstatistikverordnung (2007). 284. Verordnung des Bundesministers für Wirtschaft und Arbeit über statistische Erhebungen für den Bereich der Elektrizitätswirtschaft.

    Google Scholar 

  • Padhy, N. (2004). Unit commitment-a bibliographical survey. IEEE Transactions on Power Systems, 19(2), 1196–1205.

    Article  Google Scholar 

  • Philpott, A., & Schultz, R. (2006). Unit commitment in electricity pool markets. Mathematical Programming, 108(2), 313–337.

    Article  Google Scholar 

  • Rosenthal, R. E. (1997). A GAMS Tutorial.

    Google Scholar 

  • Rosenthal, R. E. (2008). GAMS – A user’s guide. Washington, DC, USA: GAMS Development Corporation.

    Google Scholar 

  • Schweppe, F. C., Caramanis, M. C., Tabors, R. D., & Bohn, R. E. (Eds.) (2002). Spot pricing of electricty (5th ed.). Boston, MA: Kluwer.

    Google Scholar 

  • Sen, S., & Kothari, D. P. (1998). Optimal thermal generating unit commitment: a review. International Journal of Electrical Power & Energy Systems, 20(7), 443–451.

    Article  Google Scholar 

  • Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128–135.

    Article  Google Scholar 

  • Shiina, T., & Birge, J. R. (2004). Stochastic unit commitment problem. International Transactions in Operational Research, 11(1), 19–32.

    Article  Google Scholar 

  • Stadtwerke Saarlouis GmbH (2003). Jahreshöchstlast als viertelstündige Leistungsmessung.

    Google Scholar 

  • Takriti, S., Birge, J., & Long, E. (1996). A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems, 11(3), 1497–1508.

    Article  Google Scholar 

  • Takriti, S., Krasenbrink, B., & Wu, L. S. -Y. (2000). Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem. Operations Research, 48(2), 268–280.

    Article  Google Scholar 

  • Talaq, J. H., EI-Hawary, F., & EI-Hawary, M. E. (1994). A summary of environmental/economic dispatch algorithms. IEEE Transactions on Power Systems, 9(3), 1508–1516.

    Article  Google Scholar 

  • Verband der Netzbetreiber - VDN - e.V. beim VDEW (2006). VDN-Richtlinie – MeteringCode 2006. Berlin.

    Google Scholar 

  • Wallace, S. W., & Fleten, S. -E. (2003). Stochastic programming. In A. Ruszczynski & A. Shapiro (Eds.), Handbooks in operations research and management science, chapter Stochastic programming models in energy (Vol. 10, pp. 637–677). North-Holland.

    Google Scholar 

  • Wolsey, L. A., & Nemhauser, G. L. (1999). Integer and combinatorial optimization. Wiley-Interscience.

    Google Scholar 

  • Wood, A. J. & Wollenberg, B. F. (1996). Power generation, operation, and control (2nd ed.). New York: Wiley.

    Google Scholar 

  • Yalcinoz, T., & Köksoy, O. (2007). A multiobjective optimization method to environmental economic dispatch. International Journal of Electrical Power & Energy Systems, 29(1), 42–50.

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Peter Miebach (Mühlheim an der Ruhr, Germany) for providing the real-world case to us and his engagement in improving the description of the real world situation in this paper. Panos M. Pardalos and Steffen Rebennack are partially supported by AirForce and CRDF grants. The support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Rebennack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rebennack, S., Kallrath, J., Pardalos, P.M. (2010). Energy Portfolio Optimization for Electric Utilities: Case Study for Germany. In: Bjørndal, E., Bjørndal, M., Pardalos, P., Rönnqvist, M. (eds) Energy, Natural Resources and Environmental Economics. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12067-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12067-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12066-4

  • Online ISBN: 978-3-642-12067-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics