Skip to main content

Stabilized Finite Element Approximations of Flow Over a Self-Oscillating Airfoil

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2009

Abstract

The paper presents the comparison of numerical solution of a 2D aeroelastic problem and experimental results. For the numerical approximation the coupled formulation of a turbulent flow over an oscillating solid airfoil is considered. The flow is modelled by the incompressible Reynolds averaged Navier–Stokes (RANS) equations rewritten in Arbitrary Lagrangian–Eulerian (ALE) form and discretized by the stabilized finite element method (FEM). The numerical results are compared with the results of optical measurements of flow field around an elastically supported vibrating double circular arc (DCA) 18% profile. The measurements were performed above the critical airflow velocity for loss of the system stability by flutter. The numerical results for the time dependent pressure distribution on the fluttering airfoil are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bathe, K.J.: Computational Fluid and Solid Mechanics. Elsevier, Amsterdam (2007)

    Google Scholar 

  2. Codina, R.: A discontinuity capturing crosswind-dissipation for the finite element solution of the convection diffusion equation. Comp. Meth. Appl. Mech. Eng., 110, 325–342 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dolejší, V.: Anisotropic mesh adaptation technique for viscous flow simulation. East W. J. Numer. Math., 9, 1 (2001)

    MATH  Google Scholar 

  4. Dowell, E.H.: A Modern Course in Aeroelasticity. Kluwer, Dordecht (1995)

    MATH  Google Scholar 

  5. Dubcová, L., Feistauer, M., Horáček, J., Sváček, P.: Numerical simulation of airfoil vibrations induced by turbulent flow. J. Comput. Appl. Math., 218(1), 34–42 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gelhard, T., Lube, G., Olshanskii, M.A, Starcke, J.H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math., 177, 243–267 (2005)

    Google Scholar 

  7. Girault, V., Raviart, P.A.: Finite Element Methods for the Navier–Stokes Equations, Springer, Berlin (1986)

    MATH  Google Scholar 

  8. Lube, G.: Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems. Num. Anal. Math. Model., 29, 85–104 (1994)

    MathSciNet  Google Scholar 

  9. Nomura, T., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element for interaction of fluid and a rigid body. Comput. Meth. Appl. Mech. Eng., 95, 115–138 (1992)

    Article  MATH  Google Scholar 

  10. Růžička, M., Feistauer, M., Horáček, J. and Sváček, P.: Interaction of incompressible flow and a moving airfoil. Electron. Trans. Numer. Anal., 32, 123–133 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Sváček, P., Feistauer, M., Horáček, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. J. Fluids Struct., 23, 391–411 (2007)

    Article  Google Scholar 

  12. Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Vlček, V., Horáček, J., Luxa, M., Veselý J.: Visualization of unsteady flow around a vibrating profile. 9th International Conference on Flow Induced Vibration FIV 2008, Praha, 30.6.–3.7.2008, Flow-Induced Vibration (Zolotarev, I., Horzek, J. eds.). Praha: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v.v.i., pp. 531–536 (2008)

    Google Scholar 

  14. Wilcox, D.C.: Turbulence modeling for CFD. DCW Industries, La Canada, California (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sváček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sváček, P., Horáček, J. (2010). Stabilized Finite Element Approximations of Flow Over a Self-Oscillating Airfoil. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11795-4_91

Download citation

Publish with us

Policies and ethics