Skip to main content

Adaptive Two-Step Peer Methods for Incompressible Navier–Stokes Equations

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2009

Abstract

The paper presents a numerical study of two-step peer methods up to order six, applied to the non-stationary incompressible Navier–Stokes equations. These linearly implicit methods show good stability properties, but the main advantage over one-step methods lies in the fact that even for PDEs no order reduction is observed. To investigate whether the higher order of convergence of the two-step peer methods equipped with variable time steps pays off in practically relevant CFD computations, we consider typical benchmark problems. Higher accuracy and better efficiency of the two-step peer methods compared to classical third-order one-step methods of Rosenbrock-type can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdmann, B., Lang, J., Roitzsch, R.: Kardos user’s guide. Tech. Rep. ZR 02–42, Konrad-Zuse-Zentrum, Berlin, 2002

    Google Scholar 

  2. Gerisch, A., Lang, J., Podhaisky, H., Weiner, R.: High-order linearly implicit two-step peer-finite element methods for time-dependent PDEs. Appl. Numer. Math. 59, 624–638 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)

    Article  MATH  Google Scholar 

  4. John, V., Matthies, G., Rang, J.: A comparison of time-discretization/linearization approaches for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195, 5995–6010 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lang, J.: Adaptive incompressible flow computations with linearly implicit time discretization and stabilized finite elements. In: Papailiou, K.D., Tsahalis, D., Periaux, J., Hirsch, C., Pandolfi, M. (eds.) Computational Fluid Dynamics, pp. 200–204. Wiley, New York (1998)

    Google Scholar 

  6. Lang, J., Teleaga, D.: Towards a fully space-time adaptive FEM for magnetoquasistatics. IEEE Trans. Magn. 44, 1238–1241 (2008)

    Article  Google Scholar 

  7. Lang, J., Verwer, J.: ROS3P – an accurate third-order Rosenbrock solver designed for parabolic problems. BIT 41, 731–738 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II, pp. 547–566. Vieweg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottermeier, B., Lang, J. (2010). Adaptive Two-Step Peer Methods for Incompressible Navier–Stokes Equations. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11795-4_41

Download citation

Publish with us

Policies and ethics