Skip to main content

Archean Tectonics

  • Reference work entry
Encyclopedia of Astrobiology

Synonyms

Crustal deformation; Early earth

Keywords

Archean, continents, crust, lithosphere, non-uniformitarian, plate tectonics, tectonics, thermal evolution of the Earth, TTG

Definition

Archean tectonics is the study of the formation, interaction, and deformation of the Earth’s continental and oceanic crust during early Earth history (the Archean Eon; ca. 4.0–2.5 Ga) and the driving forces behind these processes, including mantle plumes, subduction, and accretion/collision. This topic remains highly controversial due, in part, to a fragmentary rock record, but also to nonunique interpretations of complex geological datasets in the absence of actualistic plate configurations. Historically, Archean tectonics has been polarized into uniformitarian (i.e., analogous with modern, or Phanerozoic Earth) and non-uniformitarian views, but recent studies have favored modern Earth processes in the Archean, complicated by problems arising mainly from greater heat production and higher mantle...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res 108(B6):ECV 5-1–5-11

    Article  Google Scholar 

  • Benn K, Mareschal J-C, Condie KC (2006) Archean geodynamics and environments, vol 164, Geophysical monograph series. American Geophysical Union, Washington, DC, p 320

    Book  Google Scholar 

  • Bleeker W, Ketchum J, Jackson V, Villeneuve M (1999) The central slave basement complex, part I: its structural topology and autochthonous cover. Can J Earth Sci 36:1083–1109

    Article  Google Scholar 

  • Blenkinsop TG, Fedo CM, Bickle MJ, Eriksson KA, Martin A, Nisbet EG, Wilson JF (1993) Ensialic origin for the Ngezi Group, Belingwe greenstone belt, Zimbabwe. Geology 21:1135–1138

    Article  ADS  Google Scholar 

  • Bridgwater D, McGregor VR, Myers JS (1974) A horizontal tectonic regime in the Archean of Greenland and its implications for early crustal thickening. Precambrian Res 1:179–197

    Article  Google Scholar 

  • Brown M, Rushmer T (2006) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge

    Google Scholar 

  • Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674

    Article  ADS  Google Scholar 

  • Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Res 48:99–156

    Article  Google Scholar 

  • Chardon D, Choukroune P, Jayananda M (1996) Strain patterns, decollement and incipient sagducted greenstone terrains in the Archean Dharwar craton (southern India). J Struct Geol 18:991–1004

    Article  ADS  Google Scholar 

  • Collins WJ, Van Kranendonk MJ, Teyssier C (1998) Partial convective overturn of Archean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications. J Struct Geol 20:1405–1424

    Article  ADS  Google Scholar 

  • Condie KC (1994) Archean crustal evolution. Elsevier, Amsterdam

    Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Article  ADS  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  ADS  Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Article  ADS  Google Scholar 

  • Hamilton W (1998) Archean magmatism and deformation were not the products of plate tectonics. Precambrian Res 91:143–179

    Article  Google Scholar 

  • Hanmer S, Greene DC (2002) A modern structural regime in the Paleoarchean (3.64 Ga); Isua Greenstone Belt, southern West Greenland. Tectonophysics 346:201–222

    Article  ADS  Google Scholar 

  • Harley SL (2003) Archean to Pan-African crustal development and assembly of East Antarctica: metamorphic characteristics and tectonic implications. In: Yoshida M, Windley BF (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. London, Geological Society, pp 203–230, Special Publication 206

    Google Scholar 

  • Hickman AH (1984) Archean diapirism in the Pilbara Block, Western Australia. In: Kröner A, Greiling R (eds) Precambrian tectonics illustrated. E. Schweizerbarts’che Verlagsbuchhandlung, Stuttgart, pp 113–127

    Google Scholar 

  • Jaupart C, Labrosse S, Mareschal J-C (2007) Temperatures, heat and energy in the mantle of the Earth. In: Bercovici D (ed) Treatise on geophysics, vol 7, Mantle convection. Elsevier, Amsterdam, pp 253–303

    Chapter  Google Scholar 

  • Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. In: Benn K, Mareschal J-C, Condie K (eds) Archean Geodynamics and Environments. American Geophysical Union, Washington, DC, pp 7–32

    Chapter  Google Scholar 

  • Lenardic A, Moresi L-N, Mühlhaus H (2003) The longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res 108:2303, doi:10.1029/2002JB001859

    Article  Google Scholar 

  • Logan WE (1857) On the division of the Azoic rocks of Canada into Huronian and Lawrentian. Proc Am Assoc Adv Sci 1857:44–47

    Google Scholar 

  • Lowe DR, Tice MM (2007) Tectonic controls on atmospheric, climatic, and biological evolution 3.5–3.4 Ga. Precambrian Res 158:177–197

    Article  Google Scholar 

  • Macgregor AM (1951) Some milestones in the Precambrian of Southern Rhodesia. Proc Geol Soc SA 54:27–71

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  ADS  Google Scholar 

  • McCall JGH (2003) A critique of the analogy between Archean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran. Precambrian Res 127:5–18

    Article  Google Scholar 

  • Moyen J-F, Stevens G, Kisters AFM (2006) Record of mid-Archean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562

    Article  ADS  Google Scholar 

  • Myers JS (1976) Granitoid sheets, thrusting and Archean crustal thickening in West Greenland. Geology 4:265–268

    Article  Google Scholar 

  • Nutman AP, Friend CRL, Bennett VC (2002) Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss complex, Greenland: implications for early Archean tectonics. Tectonics 21:10.1029/2000TC001203

    Google Scholar 

  • Parman SW (2007) Helium isotopic evidence for episodic mantle melting and crustal growth. Nature 446:900–903

    Article  ADS  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Rey PF, Philippot P, Thebaud N (2003) Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75-2.65 Ga global crisis. Precambrian Res 127:43–60

    Article  Google Scholar 

  • Riciputi LR, Valley JW, McGregor VR (1990) Conditions of Archean granulite metamorphism in the Godthab-Fiskenaesset region, southern West Greenland. J Metmaorphic Geol 8:171–190

    Article  Google Scholar 

  • Rollinson H (2007) Early Earth Systems: A geochemical Approach. Blackwell, Maldon, USA

    Google Scholar 

  • Sandiford M, Van Kranendonk MJ, Bodorkos S (2004) Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains: a model based on the eastern Pilbara Craton, Western Australia. Tectonics 23, TC1009, DOI: 10.1029/2002TC001452

    Google Scholar 

  • Shirey SB, Kamber BS, Whitehouse MJ, Mueller PA, Basu AR (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. In: Condie KC, Pease V (eds) When did plate tectoincs begin on Earth? Geol Soc America, Spec Paper 440, pp 1–29

    Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Howard HM, Hickman AH (2005) Modern-style subduction processes in the MesoArchean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth Planet Sci Lett 231:221–237

    Article  ADS  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306

    Article  ADS  Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Article  ADS  Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–560

    Article  ADS  Google Scholar 

  • Stockwell CH (1961) Structural provinces, orogenies and time classification of rocks of the Canadian Shield. Geol Surv Can Pap 61–17:108–118

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd Edition. Cambridge University Press, New York, 456 p

    Book  Google Scholar 

  • van Hunen J, van den Berg AP (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235

    Article  ADS  Google Scholar 

  • Van Kranendonk MJ (2007) Tectonics of early Earth. In: Van Kranendonk MJ, Smithies RH, Bennet V (eds) Earth’s oldest rocks. Developments in precambrian geology, vol 15. Elsevier, Amsterdam, pp 1105–1116

    Chapter  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007) Secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Article  Google Scholar 

  • Van Kranendonk MJ, Kröner A, Hegner E, Connelly J (2009) Age, lithology and structural evolution of the c. 3.53 Ga Theespruit formation in the Tjakastad area, southwestern Barberton Greenstone Belt, South Africa, with implications for Archean tectonics. Chem Geol 261:114–138

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Wingate MTD, Bodorkos S (2010) Evidence for Mesoarchean (3.2 Ga) rifting of the Pilbara Craton: the missing link in an early Precambrian Wilson cycle. Precambrian Res 177:145–161

    Article  Google Scholar 

  • Viljoen MJ, Viljoen RP (1969) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Geol Soc SA Spec Publ 2:55–86

    Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  ADS  Google Scholar 

  • Wilks ME (1988) The Himalayas – a modern analogue for Archean crustal evolution. Earth Planet Sci Lett 87:127–136

    Article  ADS  Google Scholar 

  • Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth Sci Rev 93:1–30

    Article  ADS  Google Scholar 

  • Wyman DA, Ayer JA, Conceição RV, Sage RP (2006) Mantle processes in an Archean orogen: evidence from 2.67 Ga diamond-bearing lamprophyres and xenoliths. Lithos 89:300–332

    Article  ADS  Google Scholar 

  • Zegers TE, van Keken PE (2001) Middle Archean continent formation by crustal delamination. Geology 29:1083–1086

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Julian Van Kranendonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Van Kranendonk, M.J. (2011). Archean Tectonics. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11274-4_100

Download citation

Publish with us

Policies and ethics