Skip to main content

Student Groups Modeling by Integrating Cluster Representation and Association Rules Mining

  • Conference paper
SOFSEM 2010: Theory and Practice of Computer Science (SOFSEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

Abstract

Finding groups of students with similar preferences enables to adjust e-learning systems according to their needs. Building models for each group can help in suggesting teaching paths and materials according to member requirements. In the paper, it is proposed to connect a cluster representation, in the form of the likelihood matrix, and frequent patterns, for building models of student groups. Such approach enables to get the detailed knowledge of group members’ features. The research is focused on individual traits, which are dominant learning style dimensions. The accuracy of the proposed method is validated on the basis of tests done for different clusters of real and artificial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zaïane, O.R.: Clustering and Sequential Pattern Mining of Online Collaborative Learning Data. IEEE T. Knowl. Data En. 21, 759–772 (2009)

    Article  Google Scholar 

  2. Romero, C., Ventura, S.: Educational Data Mining: a Survey from 1995 to 2005. Expert Syst. Appl. 33, 135–146 (2007)

    Article  Google Scholar 

  3. Tang, T., McCalla, G.: Smart Recommendation for an Evolving e-Learning System. International Journal on E-Learning 4, 105–129 (2005)

    Google Scholar 

  4. Talavera, L., Gaudioso, E.: Mining Student Data to Characterize Similar Behavior Groups in Unstructured Collaboration Spaces. In: Workshop on Artificial Intelligence in CSCL, 16th European Conference on Artificial Intelligence , pp. 17–23 (2004)

    Google Scholar 

  5. Wang, F.: On Using Data-Mining Technology for Browsing Log File Analysis in Asynchronous Learning Environment. In: Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 2005–2006 (2002)

    Google Scholar 

  6. Minaei-Bidgoli, B., Tan, P., Punch, W.: Mining Interesting Contrast Rules for a Web-Based Educational System. In: The Twenty-First International Conference on Machine Learning Applications, pp. 1–8 (2004)

    Google Scholar 

  7. Shen, R., Han, P., Yang, F., Yang, Q., Huang, J.: Data Mining and Case-Based Reasoning for Distance Learning. Journal of Distance Education Technologies 1, 46–58 (2003)

    Google Scholar 

  8. García, E., Romero, C., Ventura, S., de Castro, C.: An Architecture for Making Recommendations to Courseware Authors Using Association Rule Mining and Collaborative Filtering. Use Model. User-Adap. 19, 99–132 (2009)

    Article  Google Scholar 

  9. Zakrzewska, D.: Cluster Analysis for Building Personalized e-Learning System. Pol. J. Environ. Stud. 16, 330–334 (2007)

    Google Scholar 

  10. Zakrzewska, D.: Cluster Analysis in Personalized e-Learning Systems. In: Nguyen, N.T., Szczerbicki, E. (eds.) Intelligent Systems for Knowledge Management. Studies in Computational Intelligence, vol. 252, pp. 229–250. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Alfonseca, E., Carro, R.M., Martin, E., Ortigosa, A., Paredes, P.: The Impact of Learning Styles on Student Grouping for Collaborative Learning: a Case Study. Use Model. User-Adap. 16, 377–401 (2006)

    Article  Google Scholar 

  12. Xu, D., Wang, H., Su, K.: Intelligent Student Profiling with Fuzzy Models. In: HICSS 2002, Hawaii (2002)

    Google Scholar 

  13. Viola, S.R., Graf, S., Kinshuk, Leo, T.: Investigating Relationships within the Index of Learning Styles: a Data Driven Approach. Interactive Technology & Smart Education 4, 7–18 (2007)

    Google Scholar 

  14. Han, J., Kamber, M.: Data Mining. Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2006)

    Google Scholar 

  15. Brusilovsky, P.: Adaptive Hypermedia. Use Model. User-Adap. 11, 87–110 (2001)

    Article  MATH  Google Scholar 

  16. Carver, C.A., Howard, R.A., Lane, W.D.: Addressing Different Learning Styles through Course Hypermedia. IEEE T. Educ. 42, 33–38 (1999)

    Article  Google Scholar 

  17. Kuljis, J., Liu, F.: A Comparison of Learning Style Theories on the Suitability for Elearning. In: Proc. of IASTED Conference on Web Technologies, Applications, and Services, pp. 191–197. ACTA Press (2005)

    Google Scholar 

  18. Felder, R.M., Silverman, L.K.: Learning and Teaching Styles in Engineering Education. Eng. Educ. 78, 674–681 (1988)

    Google Scholar 

  19. ILS Questionnaire, http://www.engr.ncsu.edu/learningstyles/ilsweb.html

  20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)

    MATH  Google Scholar 

  21. Zakrzewska, D.: Validation of Cluster Analysis Techniques for Students’ Grouping in Intelligent e-Learning Systems. In: Proc. of 14th International Congress of Cybernetics and Systems of WOSC, Wroclaw, Poland, pp. 893–901 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zakrzewska, D. (2010). Student Groups Modeling by Integrating Cluster Representation and Association Rules Mining. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics