Skip to main content

Role of GH/IGF-I Deficiency in Aging

  • Chapter
  • First Online:
Laron Syndrome - From Man to Mouse
  • 585 Accesses

Core Message

Our laboratory and others have been able to use the GHR−/− mice to elucidate the impacts of GH on aging. While many questions persist, these mice have helped to establish that a lack of GH action can extend life span in a manner similar to caloric restriction. Moreover, insulin sensitivity appears to be the most prominent mechanism shared between these two interventions that result in life span extension. Further analysis of the contribution of each of the ­insulin-sensitive tissues as they relate to GH should help focus on these mechanisms. Thus, our laboratory is currently generating liver, muscle, and adipose tissue-specific GHR gene disrupted mice. By investigating the dynamic interactions between GH and insulin signaling within these tissues, how they alter the physiology of other tissues in compensation for the lack of GHR, and the effect on aging will further our understanding of the GH-related mechanisms that extend longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bartke A (2000) Delayed aging in Ames dwarf mice. Relationships to endocrine function and body size. Results Probl Cell Differ 29:181–202

    Article  PubMed  CAS  Google Scholar 

  • Bartke A et al (2000) Growth hormone and aging. J Amer Aging Assoc 23:219–225

    CAS  Google Scholar 

  • Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001) Extending the lifespan of long-lived mice. Nature 414:412

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (2000) Telomeres and telomerase. Keio J Med 49:59–65

    Article  PubMed  CAS  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 103:7901–7905

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski MS et al (2009) Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS ONE 4:e4567

    Article  PubMed  Google Scholar 

  • Breese CR, Ingram RL, Sonntag WE (1991) Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-I), IGF-I gene expression, and IGF-I binding proteins. J Gerontol 46:B180–B187

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (1996) Replicative senescence: an old lives’ tale? Cell 84:497–500

    Article  PubMed  CAS  Google Scholar 

  • Carter CS et al (2002) Models of growth hormone and IGF-I deficiency: applications to studies of aging processes and life-span determination. J Gerontol A Biol Sci Med Sci 57: B177–B188

    Article  PubMed  Google Scholar 

  • Chen WY, Wight DC, Wagner TE, Kopchick JJ (1990) Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A 87:5061–5065

    Article  PubMed  CAS  Google Scholar 

  • Chen WY, White ME, Wagner TE, Kopchick JJ (1991a) Functional antagonism between endogenous mouse growth hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology 129:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Chen WY, Wight DC, Mehta BV, Wagner TE, Kopchick JJ (1991b) Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol Endocrinol 5:1845–1852

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292: 104–106

    Article  PubMed  CAS  Google Scholar 

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912

    PubMed  CAS  Google Scholar 

  • Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A 89:7370–7374

    Article  PubMed  CAS  Google Scholar 

  • Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613

    Article  PubMed  CAS  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin and IGF-I levels and increased lifespan. Endocrinology 144:3799–3810

    Article  PubMed  CAS  Google Scholar 

  • Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D (2002) Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol 173:81–94

    Article  PubMed  CAS  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141: 1399–1406

    PubMed  CAS  Google Scholar 

  • Dozmorov I, Galecki A, Chang Y, Krzesicki R, Vergara M, Miller RA (2002) Gene expression profile of long-lived snell dwarf mice. J Gerontol A Biol Sci Med Sci 57:B99–B108

    Article  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23: 599–622

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98:6736–6741

    Article  PubMed  CAS  Google Scholar 

  • Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130

    Article  PubMed  CAS  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J (2003) Aging and genome maintenance: lessons from the mouse? Science 299:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Holzenberger M et al (2003) IGF-I receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  PubMed  CAS  Google Scholar 

  • Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J (2002) Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech Ageing Dev 123:1229–1244

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Friedman DB, Fitzpatrick PA, Conley WL (1987) Mutant genes that extend life span. Basic Life Sci 42: 91–100

    PubMed  CAS  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB, Austad SN (2000) Why do we age? Nature 408:233–238

    Article  PubMed  CAS  Google Scholar 

  • Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kowald A (2002) Lifespan does not measure ageing. Biogerontology 3:187–190

    Article  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  Google Scholar 

  • Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408:263–266

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ (2003) Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ. 2003 Feb 26; 2003(8):RE2

    Google Scholar 

  • Meites J (1990) Aging: hypothalamic catecholamines, neuroendocrine-immune interactions, and dietary restriction. Proc Soc Exp Biol Med 195:304–311

    PubMed  CAS  Google Scholar 

  • Migliaccio E et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16:2657–2666

    Article  PubMed  CAS  Google Scholar 

  • Nemoto S, Finkel T (2002) Redox regulation of forkhead ­proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–S30

    Article  PubMed  CAS  Google Scholar 

  • Ogg S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  • Okada S et al (1992) A growth hormone (GH) analog can antagonize the ability of native GH to promote differentiation of 3T3-F442A preadipocytes and stimulate insulin-like and lipolytic activities in primary rat adipocytes. Endocrinology 130:2284–2290

    Article  PubMed  CAS  Google Scholar 

  • Parr T (1997) Insulin exposure and aging theory. Gerontology 43:182–200

    Article  PubMed  CAS  Google Scholar 

  • Parr T (1999) Insulin exposure and unifying aging. Gerontology 45:121–135

    Article  PubMed  CAS  Google Scholar 

  • Quigley K, Goya R, Nachreiner R, Meites J (1990) Effects of underfeeding and refeeding on GH and thyroid hormone secretion in young, middle-aged, and old rats. Exp Gerontol 25:447–457

    Article  PubMed  CAS  Google Scholar 

  • Sell DR et al (2003) The effect of caloric restriction on glycation and glycoxidation in skin collagen of nonhuman primates. J Gerontol A Biol Sci Med Sci 58:508–516

    Article  PubMed  Google Scholar 

  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Tanhauser SM, Laipis PJ (1995) Multiple deletions are detectable in mitochondrial DNA of aging mice. J Biol Chem 270:24769–24775

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  PubMed  CAS  Google Scholar 

  • Teillet L et al (2000) Food restriction prevents advanced glycation end product accumulation and retards kidney aging in lean rats. J Am Soc Nephrol 11:1488–1497

    PubMed  CAS  Google Scholar 

  • Van Remmen H, Richardson A (2001) Oxidative damage to mitochondria and aging. Exp Gerontol 36:957–968

    Article  PubMed  CAS  Google Scholar 

  • Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P (1999) Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 96:10770–10775

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G, Wanke R (1993) Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev 68:71–87

    Article  PubMed  CAS  Google Scholar 

  • Xu BC et al (1995) Effects of growth hormone antagonists on 3T3-F442A preadipocyte differentiation. J Endocrinol 146:131–139

    Article  PubMed  CAS  Google Scholar 

  • Yu CE et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, He L, Baumann G, Kopchick JJ (1997a) Deletion of the mouse GH-binding protein (mGHBP) mRNA polyadenylation and splicing sites does not abolish production of mGHBP. J Mol Endocrinol 19:1–13

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y et al (1997b) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 94:13215–13220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward O. List .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

List, E.O. (2011). Role of GH/IGF-I Deficiency in Aging. In: Laron, Z., Kopchick, J. (eds) Laron Syndrome - From Man to Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11183-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11183-9_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11182-2

  • Online ISBN: 978-3-642-11183-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics