Skip to main content

Many Particle Coulomb Systems

  • Chapter
Statistical Mechancis

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 71))

  • 1073 Accesses

Abstract

With the introduction of the Schroedinger equation in 1926 it became possible to resolve one of the fundamental paradoxes of the atomic theory of matter (which itself had only become universally accepted a few decades earlier): Why do the electrons not fall into the nucleus?(Jeans, 1915). Following this success, more complicated questions posed themselves. Why is the lowest energy of bulk matter extensive, i.e. why is it proportional to N, the number of particles, instead of to some higher power of N? Next, why do the ordinary laws of thermodynamics hold? Why, in spite of the long range Coulomb force, can a block of matter be broken into two pieces which, after a microscopic separation, are independent of each other?

The aim of these lectures is to answer the above questions in a simple and coherent way. It is a summary of research I have been engaged in for the past few years, and it has been my good fortune to have had the benefit of collaboration with J.L. Lebowitz, B. Simon and W.E. Thirring. Without their insights and stimulation probably none of this could have been carried to fruition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. alàzs, N., 1967, Formation of stable molecules within the statistical theory of atoms, Phys. Rev. 156, 42–47.

    Article  Google Scholar 

  2. Birman, M.S., 1961, Mat. Sb. 55 (97), 125–174; The spectrum of singular boundary value problems, Amer. Math. Soc. Transl. Ser. 2 (1966), 53, 23–80.

    MathSciNet  Google Scholar 

  3. Dirac, P.A.M., 1930, Note on exchange phenomena in the Thomas atom, Proc. Camb. Phil. Soc. 26, 376–385.

    Article  MATH  Google Scholar 

  4. Dyson, F.J., 1967, Ground-state energy of a finite system of charged particles, J. Math. Phys. 8, 1538–1545.

    Article  MathSciNet  Google Scholar 

  5. Dyson, F.J. and A. Lenard, 1967, Stability of matter. I, J. Math. Phys. 8, 423–434.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fed, E., 1927, Un metodo statistic0 per la determinazione di alcune prioretà dell' atome, Rend. Acad. Naz. Lincei 6, 602–607.

    Google Scholar 

  7. Fock, V., 1930, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zeit. Phys. 61, 126–148; see also V. Fock, “Selfconsistent field” mit austausch für Natrium, Zeit. Phys. 62 (1930), 795–805.

    Article  Google Scholar 

  8. Gombás, P., 1949, “Die statistischen Theorie des Atomes und ihre Anwendungen’, Springer Verlag, Berlin.

    Google Scholar 

  9. Griffiths, R.B., 1969, Free energy of interacting magnetic dipoles, Phys. Rev. 172, 655–659.

    Google Scholar 

  10. Hartree, D.R., 1927–28, The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods, Proc. Camb. Phil. SOC. 24, 89–110.

    Article  Google Scholar 

  11. Heisenberg, W., 1927, Über den anschaulichen Inhalt der quanten-theoretischen Kinematik und Mechanik, Zeits. Phys., 43, 172–198.

    Article  Google Scholar 

  12. Jeans, J.H., 1915, The mathematical theory of electricity and magnetism, Cambridge University Press, third edition, page 168.

    Google Scholar 

  13. Kirzhnits, D.A., 1957, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 115– 123. Engl. transl. Quantum corrections to the Thomas-Fermi equation, Sov. Phys. JETP, 5 (1957), 64–71.

    Google Scholar 

  14. Kompaneets, A.S. and E.S. Pavlovskii, 1956, J. Exptl. Theoret. Phys.(U.S.S.R.) 3l, 427–438. Engl. transl. The self-consistent field equations in an atom, Sov. Phys. JETP, 4 (1957), 328–336.

    Google Scholar 

  15. Lenard, A. and F.J. Dyson, 1968, Stability of matter. 11, J. Math. Phys. 9, 698–711.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenz, W., 1932, Über die Anwendbarkeit der statistischen Methode auf Ionengitter, Zeit. Phys. 77, 713–721.

    Article  MATH  Google Scholar 

  17. Lieb, E.H., 1976, Bounds on the eigenvalues of the Laplace and Schroedinger operators, Bull. Amer. Math. Soc., in press.

    Google Scholar 

  18. Lieb, E.H. and J.L. Lebowitz, 1972, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. in Math. 9, 316–398. See also J.L. Lebowitz, and E.H. Lieb, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett. 22 (19691, 631–634.

    Article  MathSciNet  Google Scholar 

  19. Lieb, E.H. and H. Narnhofer, 1975, The thermodynamic limit for jellium, J. Stat. Phys. 12, 291–310. Erratum: J. Stat. Phys. 14 (1976), So. 5.

    Article  MathSciNet  Google Scholar 

  20. Lieb, E.H. and B. Simon, 1973, On solutions to the Hartree-Fock problem for atoms and molecules, J. Chem. Phys. 61, 735–736. Also a longer paper in preparation.

    Article  MathSciNet  Google Scholar 

  21. Lieb, E.H. and B. Simon, 1975, The Thomas-Permi theory of atonp, molecules and solids, Adv. in Math., in press. See also E.H. Lieb and B. Simon, Thomas-Fermi theory revisited, Phys. Rev. Lett. 33 (1973), 681–683.

    Article  Google Scholar 

  22. Lieb, E.H. and W.E. Thirring, 1975, A bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett.35 687–689, Errata: Phys. Rev. Lett. (1975), 35, 1116. For more details on kinetic energy inequalities and their application, see also E.B. Lieb and W.E. Thirring, Inequalities for the moments of the Eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, E.H. Lieb, B. Simon and A.S. Wightman editors, Princeton University Press, 1976.

    Article  Google Scholar 

  23. Rosen, G., 1971, Minimum value for c in the Sobolev inequality ∥ϕ∥3 ≤ C∥∇ϕ∥3, SIAM J. Appl. Match. 21, 30–32.

    Article  MATH  Google Scholar 

  24. Schwinger, J., 1961, On the bound states of a given potential, Proc. Nat. Acad. Sci. (U.S.) 47, 122–129.

    Article  MathSciNet  Google Scholar 

  25. Scott, J.M.C., 1952, The binding energy of the Thomas Fermi atom, Phil. Mag. 43, 859–867.

    Google Scholar 

  26. Sheldon, J.W., 1955, Use of the statistical field approximation in molecular physics, Phys. Rev. 99, 1291–1301.

    Article  MATH  Google Scholar 

  27. Slater, J.C., 1930, The theory of complex spectra, Phys. Rev. 34, 1293–1322.

    Article  Google Scholar 

  28. Sobolev, S.L., 1938, Mat. Sb. 46, 471 (1938). See also S.L. Sobolev, Applications of functional analysis in mathematical physics, Leningrad (1950), Amer. Math. Soc. Transl. of Monographs, 7 (1963).

    Google Scholar 

  29. Sommerfeld, A., 1932, Asymptotische Integration der Differential-gleichung des Thomas-Fermischen Atoms, Zeit. Phys, 78, 283–308.

    Article  MATH  Google Scholar 

  30. Teller, E., 1962, On the stability of molecules in the Thomas-Fermi theory, Rev. Mod. Phys. 34, 627–631.

    Article  MATH  Google Scholar 

  31. Thomas, L.H., 1927, The calculation of atomic fields, Proc. Camb. Phil. Soc. 23, 542–548.

    Article  MATH  Google Scholar 

  32. Von Weizsäcker, C.F., 1935, Zur Theorie der Kernmassen, 96, 431–458.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giovanni Gallavotti (Coordinate)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2010). Many Particle Coulomb Systems. In: Gallavotti, G. (eds) Statistical Mechancis. C.I.M.E. Summer Schools, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11108-2_3

Download citation

Publish with us

Policies and ethics