Skip to main content

Attractors, Black Holes and Multiqubit Entanglement

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 134))

Abstract

Recently a striking correspondence has been established between quantum information theory and black hole solutions in string theory. For the intriguing mathematical coincidences underlying this correspondence the term “Black Hole Analogy” has been coined. The basic correspondence of the analogy is the one between the entropy formula of certain stringy black hole solutions on one hand and entanglement measures for qubit and qutrit systems on the other. In these lecture notes we develop the basic concepts of multiqubit entanglement needed for a clear exposition of the Black Hole Analogy. We show that using this analogy we can rephrase some of the well-known results and awkward looking expressions of supergravity in a nice form by employing some multiqubit entangled states depending on the quantized charges and the moduli. It is shown that the attractor mechanism in this picture corresponds to a distillation procedure of highly entangled graph states at the black hole horizon. As a further insight we also find a very interesting connection between error correcting codes, designs and the classification of extremal BPS and non-BPS black hole solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Duff, Phys. Rev. D 76, 025017 (2007). arXiv:hep-th/0601134

  2. R. Kallosh, A. Linde, Phys. Rev. D 73, 104033 (2006). arXiv:hep-th/0602061

  3. P. Lévay, Phys. Rev. D 74, 024030 (2006). arXiv:hep-th/0603136

  4. M.J. Duff, S. Ferrara, Phys. Rev. D 76, 025018 (2007). arXiv:quant-ph/0609227

  5. P. Lévay, Phys. Rev. D 75, 024024 (2007). arXiv:hep-th/0610314

  6. S. Ferrara, R. Kallosh, A. Strominger, Phys. Rev. D 52, R5412 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Strominger, Phys. Lett. B 383, 39 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Ferrara, R. Kallosh, Phys. Rev. D 54, 1514 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. S. Ferrara, R. Kallosh, Phys. Rev. D 54, 1525 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. M.J. Duff, S. Ferrara, arXiv:hep-th/0612036

  11. E. Cremmer, B. Julia, Phys. Lett. B 80, 48 (1978)

    Article  ADS  Google Scholar 

  12. A. Elduque, arXiv:math.RT/0507282

  13. L. Manivel, arXiv:math.AG/0507118

  14. M.J. Duff, S. Ferrara, arXiv:0704.0507 [hep-th]

  15. P. Lévay, Phys. Rev. D 76, 106011 (2007). arXiv:0708.2799 [hep-th]

  16. M.A. Nielsen, I.K. Chuang, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  17. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States, (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  18. E. Schrödinger, Proc. Camb. Phil. Soc. 32, 446 (1936)

    Article  Google Scholar 

  19. L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183, 14 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  20. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  21. C.M. Caves, C.A. Fuchs, P. Rungta, Found. Phys. Lett. 14, 199 (2001)

    Article  MathSciNet  Google Scholar 

  22. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  23. V. Coffman, J. Kundu, W. Woottersr, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  24. A. Cayley, Camb. Math. J. 4, 193 (1845)

    Google Scholar 

  25. P. Lévay, Phys. Rev. A 71, 012334 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. J-G. Luque, J-Y. Thibon, Phys. Rev. A 67, 042303 (2003)

    Google Scholar 

  27. P. Lévay, J. Phys. A 39, 9533 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. F. Verstraete, J. Dehaene, B. De Moor, H. Verschelde, Phys. Rev. A 65, 052112 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. Steane, arXiv:quant-ph/0304016

  31. J.H. Conway, N.J.A. Sloane, Sphere Packings Lattices and Groups (Springer, Berlin, 1993)

    MATH  Google Scholar 

  32. M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.J. Briegel, quant-ph/0602096

  33. A. Ceresole, R. D’Auria, S. Ferrara, Nucl. Phys. B Proc. Suppl. 46, 67 (1996). arXiv:hep-th/9509160 l

  34. A. Ceresole, S. Ferrara, A. Marrani, arXiv:0707.0964v1 [hep-th]

  35. S. Ferrara, R. Kallosh, Phys. Rev. D 73, 125005 (2006). arXiv:hep-th/0603247

  36. R. Kallosh, N. Sivanandam, M. Soroush, J. High Energy Phys. 03, 060 (2006). arXiv:hep-th/0602005

  37. R. Kallosh, M. Shmakova, W.K. Wong, Phys. Rev. D 54, 6284 (1996). arXiv:hep-th/9607077

  38. K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, Phys. Rev. D 54, 6293 (1996). arXiv:hep-th/9608059

  39. K. Behrndt, G. Lopes Cardoso, B de Wit, R. Kallosh, D. Lust, T. Mohaupt, Nucl. Phys. B 488, 236 (1997). arXiv:hep-th/9610105

  40. K. Behrndt, D. Lust, W.A. Sabra, Nucl. Phys. B 510, 264 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. W.A. Sabra, Nucl. Phys. B 510, 247 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. W.A. Sabra, Mod. Phys. Lett. A 12, 2585 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. F. Denef, hep-th/0010222

  44. R. Kallosh, N. Sivanandam, M. Soroush, Phys. Rev. D 74, 065008 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. K. Saraikin, C. Vafa, arXiv:hep-th/0703214

  46. S. Bellucci, S. Ferrara, A. Marrani, Phys. Lett. B 635, 172 (2006). arXiv:hep-th/0602161

  47. S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Int. J. Mod. Phys. A 21, 5043 (2006). arXiv:hep-th/0606209

  48. S. Bellucci, A. Marrani, E. Orazi, A. Shcherbakov, arXiv:0707.2731 [hep-th]

  49. J. Schliemann, J.I. Cirac, M. Kus, M. Lewenstein, D. Loss, Phys. Rev. A 64, 022303 (2001)

    Article  ADS  Google Scholar 

  50. P. Lévay, Sz. Nagy, J. Pipek, Phys. Rev. A 72, 022302 (2005)

    Google Scholar 

  51. R. Paskauskas, L. You, Phys. Rev. A 64, 042310 (2001)

    Article  ADS  Google Scholar 

  52. G.C. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)

    Article  ADS  Google Scholar 

  53. K. Eckert, J. Schliemann, D. Bruband, M. Lewenstein, Ann. Phys. (N.Y.) 299, 88 (2002)

    Google Scholar 

  54. B. Zumino, J. Math. Phys. 3, 1055 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. K. Krasnov, arXiv:hep-th/0311162

  56. E. Cremmer, B. Julia, Nucl. Phys. B 159, 141 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  57. E. Cartan, Evres Complétes (Editions du Centre National de la Recherche Scientifique, Paris, 1984)

    Google Scholar 

  58. P.K. Tripathy, S.P. Trivedi, J. High Energy Phys. 03, 022 (2006). arXiv:hep-th/0511117

  59. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  60. R. Kallosh, B. Kol, Phys. Rev. D 53, 5344 (1996). arXiv:hep-th/9602014

  61. S. Ferrara, M. Gunaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 13, 2075 (1998). arXiv:hep-th/9708015

  62. M. Cvetic, A.A. Tseytlin, Solitonic strings and BPS sarurated dyonic black holes. Phys. Rev. D 53, 5619 (1996). hep-th/9512031bi

  63. B. Pioline, Class. Quant. Grav. 23, S981 (2006). hep-th/0607227

  64. M. Gunaydin, G. Sierra, P.K. Townsend, Phys. Lett. B 133, 72 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  65. G. Chapline, arXiv:hep-th/9609162

  66. E. Witten, arXiv:0706.3359 [hep-th]

  67. K. Goldstein, N. Izuka, R.P. Jena, S.P. Trivedi, Phys. Rev. D 72, 124021 (2005). arXiv:hep-th/0507096

Download references

Acknowledgements

Financial support from the Országos Tudományos Kutatási Alap (grant numbers T047035, T047041) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Lévay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lévay, P. (2010). Attractors, Black Holes and Multiqubit Entanglement. In: Bellucci, S. (eds) The Attractor Mechanism. Springer Proceedings in Physics, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10736-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10736-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10735-1

  • Online ISBN: 978-3-642-10736-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics