Skip to main content

Update on Antithrombin for the Treatment of Burn Trauma and Smoke Inhalation Injury

  • Chapter
Yearbook of Intensive Care and Emergency Medicine 2010

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2010))

  • 1100 Accesses

Abstract

A severe imbalance of systemic and alveolar hemeostasis, as evidenced by an increase in pro-coagulant and a decrease in anti-fibrinolytic activities, represents a hallmark of burn trauma and smoke inhalation injury [1]. The resulting hypercoagulable state is established within the initial 24 h after the injury and is characterized by high levels of activated factor VII, thrombin-antithrombin complexes, plasminogen activator inhibitor type-1 (PAI-1), and low levels of protein C as well as antithrombin [2]. Plasma levels of antithrombin decrease by 50 % in burn patients within the first five days and represent an independent predictor of length of hospital stay and mortality [1, 3]. However, the host response to burn trauma as well as to smoke inhalation injury, is not only restricted to coagulation disorders, but also includes a marked activation of the inflammation cascade [4]. Both the systemic inflammatory response syndrome (SIRS) and the pro-coagulatory imbalance in hemostasis ultimately result in multiple organ failure (MOF) and increased mortality rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Enkhbaatar P, Traber DL (2004) Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond) 107: 137–143

    Article  CAS  Google Scholar 

  2. Garcia-Avello A, Lorente JA, Cesar-Perez J, et al (1998) Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb Res 89: 59–64

    Article  CAS  PubMed  Google Scholar 

  3. Niedermayr M, Schramm W, Kamolz L, et al (2007) Antithrombin deficiency and its relationship to severe burns. Burns 33: 173–178

    Article  CAS  PubMed  Google Scholar 

  4. Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL (2009) Pathophysiology, management, and treatment of smoke inhalation injury. Expert Rev Resp Med 3: 283–297

    Google Scholar 

  5. Hofstra JJ, Haitsma JJ, Juffermans NP, Levi M, Schultz MJ (2008) The role of bronchoalveolar Hemostasis in the pathogenesis of acute lung injury. Semin Thromb Hemost 34: 475–484

    Article  CAS  PubMed  Google Scholar 

  6. MacLaren R, Stringer KA (2007) Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy 27: 860–873

    Article  CAS  PubMed  Google Scholar 

  7. Schultz MJ, Haitsma JJ, Zhang H, Slutsky AS (2006) Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—a review. Crit Care Med 34: 871–877

    PubMed  Google Scholar 

  8. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ (2002) Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 13: 657–670

    Article  CAS  PubMed  Google Scholar 

  9. Wiedermann CJ (2006) Clinical review: molecular mechanisms underlying the role of antithrombin in sepsis. Crit Care 10: 209

    Article  PubMed  Google Scholar 

  10. Mammen EF (1998) Antithrombin: its physiological importance and role in DIC. Semin Thromb Hemost 24: 19–25

    Article  CAS  PubMed  Google Scholar 

  11. Edmunds T, Van Patten SM, Pollock J, et al (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91: 4561–4571

    CAS  PubMed  Google Scholar 

  12. Olds RJ, Lane DA, Mille B, Chowdhury V, Thein SL (1994) Antithrombin: the principal inhibitor of thrombin. Semin Thromb Hemost 20: 353–372

    Article  CAS  PubMed  Google Scholar 

  13. Nieuwenhuizen L, de Groot PG, Grutters JC, Biesma DH (2009) A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia. Eur J Haematol 82: 413–425

    Article  CAS  PubMed  Google Scholar 

  14. Ishii K, Chen J, Ishii M, et al (1994) Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G-protein coupled receptor kinases. J Biol Chem 269: 1125–1130

    CAS  PubMed  Google Scholar 

  15. Kaur J, Woodman RC, Ostrovsky L, Kubes P (2001) Selective recruitment of neutrophils and lymphocytes by thrombin: a role for NF-kappaB. Am J Physiol Heart Circ Physiol 281: H784–795

    CAS  PubMed  Google Scholar 

  16. Senden NH, Jeunhomme TM, Heemskerk JW, et al (1998) Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161: 4318–4324

    CAS  PubMed  Google Scholar 

  17. Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H (2000) Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 275: 6580–6585

    Article  CAS  PubMed  Google Scholar 

  18. Taylor FB Jr, Emerson TE Jr, Jordan R, Chang AK, Blick KE (1988) Antithrombin-III prevents the lethal effects of Escherichia coli infusion in baboons. Circ Shock 26: 227–235

    CAS  PubMed  Google Scholar 

  19. Uchiba M, Okajima K, Murakami K (1998) Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 89: 233–241

    Article  CAS  PubMed  Google Scholar 

  20. Okajima K (1998) Antithrombin prevents endotoxin-induced pulmonary vascular injury by inhibiting leukocyte activation. Blood Coagul Fibrinolysis 9 (Suppl 2): S25–37

    Google Scholar 

  21. Woods A (2001) Syndecans: transmembrane modulators of adhesion and matrix assembly. J Clin Invest 107: 935–941

    Article  CAS  PubMed  Google Scholar 

  22. Oelschlager C, Romisch J, Staubitz A, et al (2002) Antithrombin III inhibits nuclear factor kappaB activation in human monocytes and vascular endothelial cells. Blood 99: 4015–4020

    Article  CAS  PubMed  Google Scholar 

  23. Neviere R, Tournoys A, Mordon S, et al (2001) Antithrombin reduces mesenteric venular leukocyte interactions and small intestine injury in endotoxemic rats. Shock 15: 220–225

    Article  CAS  PubMed  Google Scholar 

  24. Bastarache JA, Ware LB, Bernard GR (2006) The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med 27: 365–376

    Article  PubMed  Google Scholar 

  25. Kaneider NC, Forster E, Mosheimer B, Sturn DH, Wiedermann CJ (2003) Syndecan-4-dependent signaling in the inhibition of endotoxin-induced endothelial adherence of neutrophils by antithrombin. Thromb Haemost 90: 1150–1157

    CAS  PubMed  Google Scholar 

  26. Yamashiro K, Kiryu J, Tsujikawa A, et al (2001) Inhibitory effects of antithrombin III against leukocyte rolling and infiltration during endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 42: 1553–1560

    CAS  PubMed  Google Scholar 

  27. Souter PJ, Thomas S, Hubbard AR, Poole S, Romisch J, Gray E (2001) Antithrombin inhibits lipopolysaccharide-induced tissue factor and interleukin-6 production by mononuclear cells, human umbilical vein endothelial cells, and whole blood. Crit Care Med 29: 134–139

    Article  CAS  PubMed  Google Scholar 

  28. Dunzendorfer S, Kaneider N, Rabensteiner A, et al (2001) Cell-surface heparan sulfate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombin III. Blood 97: 1079–1085

    Article  CAS  PubMed  Google Scholar 

  29. Kaneider NC, Reinisch CM, Dunzendorfer S, Romisch J, Wiedermann CJ (2002) Syndecan-4 mediates antithrombin-induced chemotaxis of human peripheral blood lymphocytes and monocytes. J Cell Sci 115: 227–236

    CAS  PubMed  Google Scholar 

  30. Komura H, Uchiba M, Mizuochi Y, et al (2008) Antithrombin inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by monocytes in vitro through inhibition of Egr-1 expression. J Thromb Haemost 6: 499–507

    Article  CAS  PubMed  Google Scholar 

  31. Harada N, Okajima K, Kushimoto S, Isobe H, Tanaka K (1999) Antithrombin reduces ischemia/ reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. Blood 93: 157–164

    CAS  PubMed  Google Scholar 

  32. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K (1996) Attenuation of endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Am J Physiol 270: L921–L930

    CAS  PubMed  Google Scholar 

  33. Rehberg S, Zhu Y, Yamamoto Y, et al (2009) High-dose intravenous antithrombin III reduces pulmonary vascular permeability and neutrophil count in the lymph after combined burn and smoke inhalation injury. Shock 31: O57 (abst)

    Google Scholar 

  34. Hofstra JJ, Cornet AD, de Rooy BF, et al (2009) Nebulized antithrombin limits bacterial outgrowth and lung injury in Streptococcus pneumoniae pneumonia in rats. Crit Care 13: R145

    Article  PubMed  Google Scholar 

  35. Duensing TD, Wing JS, van Patten JP (1999) Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 67: 4463–4468

    CAS  PubMed  Google Scholar 

  36. Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 267: 12528–12538

    CAS  PubMed  Google Scholar 

  37. Justus AC, Roussev R, Norcross JL, Faulk WP (1995) Antithrombin binding by human umbilical vein endothelial cells: effects of exogenous heparin. Thromb Res 79: 175–186

    Article  CAS  PubMed  Google Scholar 

  38. Warren BL, Eid A, Singer P, et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286: 1869–1178

    Article  CAS  PubMed  Google Scholar 

  39. Murakami K, McGuire R, Cox RA, et al (2003) Recombinant antithrombin attenuates pulmonary inflammation following smoke inhalation and pneumonia in sheep. Crit Care Med 31: 577–583

    Article  CAS  PubMed  Google Scholar 

  40. Enkhbaatar P, Cox RA, Traber LD, et al (2007) Aerosolized anticoagulants ameliorate acute lung injury in sheep after exposure to burn and smoke inhalation. Crit Care Med 35: 2805–2810

    Article  CAS  PubMed  Google Scholar 

  41. Enkhbaatar P, Esechie A, Wang J, et al (2008) Combined anticoagulants ameliorate acute lung injury in sheep after burn and smoke inhalation. Clin Sci (Lond) 114: 321–329

    Article  CAS  Google Scholar 

  42. Kowal-Vern A, McGill V, Walenga JM, Gamelli RL (2000) Antithrombin III concentrate in the acute phase of thermal injury. Burns 26: 97–101

    Article  CAS  PubMed  Google Scholar 

  43. Kowal-Vern A, McGill V, Walenga JM, Gamelli RL (2000) Antithrombin(H) concentrate infusions are safe and effective in patients with thermal injuries. J Burn Care Rehabil 21: 115–127

    Article  CAS  PubMed  Google Scholar 

  44. Kowal-Vern A, Walenga JM, McGill V, Gamelli RL (2001) The impact of antithrombin (H) concentrate infusions on pulmonary function in the acute phase of thermal injury. Burns 27: 52–60

    Article  CAS  PubMed  Google Scholar 

  45. Kowal-Vern A, Latenser BA (2003) Antithrombin (human) concentrate infusion in pediatric patients with >50 % TBSA burns. Burns 29: 615–618

    Article  PubMed  Google Scholar 

  46. Del Principe D (2003) Antithrombin III in burned children. Minerva Anestesiol 69: 367–380

    Google Scholar 

  47. Lavrentieva A, Kontakiotis T, Bitzani M, et al (2008) Early coagulation disorders after severe burn injury: impact on mortality. Intensive Care Med 34: 700–706

    Article  CAS  PubMed  Google Scholar 

  48. Lavrentieva A, Kontakiotis T, Bitzani M, et al (2008) The efficacy of antithrombin administration in the acute phase of burn injury. Thromb Haemost 100: 286–290

    CAS  PubMed  Google Scholar 

  49. Rehberg S, Enkhbaatar P, Traber DL (2008) Anticoagulant therapy in acute lung injury: a useful tool without proper operating instruction? Crit Care 12: 179

    Article  PubMed  Google Scholar 

  50. Kipnis E, Guery BP, Tournoys A, et al (2004) Massive alveolar thrombin activation in Pseudomonas aeruginosa-induced acute lung injury. Shock 21: 444–451

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehberg, S., Traber, D.L., Enkhbaatar, P. (2010). Update on Antithrombin for the Treatment of Burn Trauma and Smoke Inhalation Injury. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2010. Yearbook of Intensive Care and Emergency Medicine, vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10286-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10286-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10285-1

  • Online ISBN: 978-3-642-10286-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics