Skip to main content

Cluster-Lift Method for Mapping Research Activities over a Concept Tree

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 263))

Abstract

The paper builds on the idea by R. Michalski of inferential concept interpretation for knowledge transmutation within a knowledge structure taken here to be a concept tree. We present a method for representing research activities within a research organization by doubly generalizing them. To be specific, we concentrate on the Computer Sciences area represented by the ACM Computing Classification System (ACM-CCS). Our cluster-lift method involves two generalization steps: one on the level of individual activities (clustering) and the other on the concept structure level (lifting). Clusters are extracted from the data on similarity between ACM-CCS topics according to the working in the organization. Lifting leads to conceptual generalization of the clusters in terms of  “head subjects” on the upper levels of ACM-CCS accompanied by their gaps and offshoots. A real-world example of the representation is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACM Computing Classification System (1998), http://www.acm.org/about/class/1998 (Cited 9 September 2008)

  2. Feather, M., Menzies, T., Connelly, J.: Matching software practitioner needs to researcher activities. In: Proc. of the 10th Asia-Pacific Software Engineering Conference (APSEC 2003), p. 6. IEEE, Los Alamitos (2003)

    Google Scholar 

  3. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing 18(1), 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, J., Wang, W., Yang, J.: Gene ontology friendly biclustering of expression profiles. In: Proc. of the IEEE Computational Systems Bioinformatics Conference, pp. 436–447. IEEE, Los Alamitos (2004)

    Google Scholar 

  5. Michalski, R.S.: Two-tiered concept meaning, inferential matching and conceptual cohesiveness. In: Vosniadou, S., Ortony, A. (eds.) Similarity and Analogical Reasoning. Cambridge University Press, N.Y (1989)

    Google Scholar 

  6. Michalski, R.S.: Inferential learning theory: A conceptual framework for characterizing learning processes. Reports on the Machine Learning and Inference Laboratory, MLI 91–9. George Mason University (1991)

    Google Scholar 

  7. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 331–363. Morgan Kauffmann, San Mateo (1983)

    Google Scholar 

  8. Middleton, S., Shadbolt, N., Roure, D.: Ontological user representing in recommender systems. ACM Trans. on Inform. Systems 22(1), 54–88 (2004)

    Article  Google Scholar 

  9. Miralaei, S., Ghorbani, A.: Category-based similarity algorithm for semantic similarity in multi-agent information sharing systems. In: IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, pp. 242–245 (2005), doi:10.1109/IAT.2005.50

    Google Scholar 

  10. Mirkin, B.: Additive clustering and qualitative factor analysis methods for similarity matrices. Journal of Classification 4(1), 7–31 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach, 276 p. Chapman & Hall /CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  12. Mirkin, B., Fenner, T., Galperin, M., Koonin, E.: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology 3(2) (2003), doi:10.1186/1471-2148-3-2

    Google Scholar 

  13. Nascimento, S., Mirkin, B., Moura-Pires, F.: Modeling proportional membership in fuzzy clustering. IEEE Transactions on Fuzzy Systems 11(2), 173–186 (2003)

    Article  Google Scholar 

  14. RAE2008: Research Assessment Exercise (2008), http://www.rae.ac.uk/ (Cited 9 September 2008)

  15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  16. Spence, R.: Information Visualization, 206 p. Addison-Wesley, ACM Press (2000)

    Google Scholar 

  17. Stepp, R., Michalski, R.S.: Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)

    Article  Google Scholar 

  18. Thorne, C., Zhu, J., Uren, V.: Extracting domain ontologies with CORDER. Tech. Report kmi-05-14. Open University, pp. 1–15 (2005)

    Google Scholar 

  19. The United Nations Millennium Project Task Force, http://www.cid.harward.edu/cidtech (Cited 1 September 2006)

  20. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.J.: Text Mining: Predictive Methods for Analyzing Unstructured Information, 237 p. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  21. Yang, L., Ball, M., Bhavsar, V., Boley, H.: Weighted partonomy-taxonomy trees with local similarity measures for semantic buyer-seller match-making. Journal of Business and Technology 1(1), 42–52 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mirkin, B., Nascimento, S., Pereira, L.M. (2010). Cluster-Lift Method for Mapping Research Activities over a Concept Tree. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning II. Studies in Computational Intelligence, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05179-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05179-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05178-4

  • Online ISBN: 978-3-642-05179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics