Skip to main content

Protein Folding Simulation by Two-Stage Optimization

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 51))

Abstract

This paper proposes a two-stage optimization approach for protein folding simulation in the FCC lattice, inspired from the phenomenon of hydrophobic collapse. Given a protein sequence, the first stage of the approach produces compact protein structures with the maximal number of contacts among hydrophobic monomers, using the CPSP tools for optimal structure prediction in the HP model. The second stage uses those compact structures as starting points to further optimize the protein structure for the input sequence by employing simulated annealing local search and a 20 amino acid pairwise interactions energy function. Experiment results with PDB sequences show that compact structures produced by the CPSP tools are up to two orders of magnitude better, in terms of the pairwise energy function, than randomly generated ones. Also, initializing simulated annealing with these compact structures, yields better structures in fewer iterations than initializing with random structures. Hence, the proposed two-stage optimization outperforms a local search procedure based on simulated annealing alone.

Research partially supported by EPSRC Grant No. EP/D062012/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E.H.L.: Local search in combinatorial optimization. Wiley, New York (1998)

    Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  3. Albrecht, A.A., Skaliotis, A., Steinhöfel, K.: Stochastic protein folding simulation in the three-dimensional HP-model. Computational Biology and Chemistry 32(4), 248–255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Backofen, R., Will, S.: A Constraint-Based Approach to Fast and Exact Structure Prediction in Three-Dimensional Protein Models. Constraints 11(1), 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Backofen, R., Will, S.: Optimally Compact Finite Sphere Packings - Hydrophobic Cores in the FCC. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 257–272. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.: A Local Move Set for Protein Folding in Triangular Lattice Models. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 369–381. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Berrera, M., Molinari, H., Fogolari, F.: Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinformatics 4, 8 (2003)

    Article  Google Scholar 

  8. Cerny, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crescenzi, P., Goldman, D., Papadimitriou, C., et al.: On the complexity of protein folding. Journal of Computational Biology 5, 423–465 (1998)

    Article  Google Scholar 

  10. Cheon, M., Chang, I.: Clustering of the Protein Design Alphabets by Using Hierarchical Self-Organizing Map. Journal of the Korean Physical Society 44, 1577–1580 (2004)

    Google Scholar 

  11. Dal Palú, A., Dovier, A., Fogolari, F.: Constraint Logic Programming approach to protein structure prediction. BMC Bioinformatics 5(1) (2004)

    Google Scholar 

  12. DeLano, W.L.: The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA (2002), http://www.pymol.org

  13. Dill, K.A., Bromberg, S., Yue, K., et al.: Principles of protein folding - A perspective from simple exact models. Protein Sci. 4, 561–602 (1995)

    Article  Google Scholar 

  14. Hajek, B.: Cooling schedules for optimal annealing. Mathem. Oper. Res. 13, 311–329 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Herráez, A.: Biomolecules in the Computer: Jmol to the rescue. Biochem. Educ. 34(4), 255–261 (2006)

    Article  Google Scholar 

  16. Kapsokalivas, L., Gan, X., Albrecht, A.A., Steinhöfel, K.: Two Local Search Methods for Protein Folding Simulation in the HP and the MJ Lattice Models. In: Proc. BIRD 2008. CCIS, vol. 13, pp. 167–179. Springer, Heidelberg (2008)

    Google Scholar 

  17. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Krippahl, L., Barahona, P.: PSICO: Solving Protein Structures with Constraint Programming and Optimization. Constraints 7(4-3), 317–331 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proc. 7th Annual International Conference on Computational Biology, pp. 188–195. ACM Press, New York (2003)

    Google Scholar 

  20. Levinthal, C.: Are there pathways for protein folding? J. de Chimie Physique et de Physico-Chimie Biologique 65, 44–45 (1968)

    Google Scholar 

  21. Miyazawa, S., Jernigan, R.L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)

    Article  Google Scholar 

  22. Mann, M., Will, S., Backofen, R.: CPSP-tools - Exact and Complete Algorithms for High-throughput 3D Lattice Protein Studies. BMC Bioinformatics 9 (2008)

    Google Scholar 

  23. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249(2), 493–507 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ullah, A.D., Kapsokalivas, L., Mann, M., Steinhöfel, K. (2009). Protein Folding Simulation by Two-Stage Optimization. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2009. Communications in Computer and Information Science, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04962-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04962-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04961-3

  • Online ISBN: 978-3-642-04962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics