Skip to main content

The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease

  • Chapter
  • First Online:
Diabetes, Insulin and Alzheimer's Disease

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

Our knowledge of the multifaceted role of insulin in the central nervous system has expanded rapidly in recent years. It is now apparent that perturbation of this role by insulin resistance and hyperinsulinemia can increase the risk for aging-related neurodegenerative disorders such as Alzheimer’s disease (AD) through a number of mechanistic pathways, delineated in elegant in vitro and animal studies. We have investigated these pathways in humans using models of insulin resistance and hyperinsulinemia. We will present results suggesting that insulin-associated effects on Aβ regulation and inflammation contribute to AD pathophysiology. This premise raises the possibility that treatments aimed at improving insulin resistance will benefit patients with AD. We will review data testing this possibility in pilot therapeutic trials using insulin sensitizers and intranasal insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    PubMed  CAS  Google Scholar 

  • Anand Kumar TC, David GFX, Umberkoman B, Saini KD (1974) Uptake of radioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labeled estradiol and progesterone. Curr Sci 43:435–439

    Google Scholar 

  • Anand Kumar TC, David GFX, Kumar K, Umberkoman B, Krishnamoorthy MS (1976) A new approach to fertility regulation by interfering with neuroendocrine pathways. In: Anand Kumar TC (ed) Proceedings of International Symposium on Neuroendocrine Regulation of Fertility, Basel, Karger

    Google Scholar 

  • Anand Kumar TC, David GF, Sankaranarayanan A, Puri V, Sundram KR (1982) Pharmacokinetics of progesterone after its administration to ovariectomized rhesus monkeys by injection, infusion, or nasal spraying. Proc Natl Acad Sci USA 79:4185–4189

    Article  PubMed  CAS  Google Scholar 

  • Apelt J, Mehlhorn G, Schliebs R (1999) Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 57:693–705

    Article  PubMed  CAS  Google Scholar 

  • Authier F, Posner BI, Bergeron JJ (1996) Insulin-degrading enzyme. Clin Invest Med 19:149–160

    PubMed  CAS  Google Scholar 

  • Bagi Z, Koller A, Kaley G (2004) PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol 286:H742–748

    Article  Google Scholar 

  • Banks WA, Jaspan JB, Kastin AJ (1997a) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18:1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Jaspan JB, Huang W, Kastin AJ (1997b) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Baskin DG, Figlewicz DP, Woods SC, Porte D Jr., Dorsa DM (1987) Insulin in the brain. Annu Rev Physiol 49:335–347

    Article  PubMed  CAS  Google Scholar 

  • Baura GD, Foster DM, Porte D Jr., Kahn SE, Bergman RN, Cobelli C, Schwartz MW (1993) Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest 92:1824–1830

    Article  PubMed  CAS  Google Scholar 

  • Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, Purohit DP, Lesser G, Grossman HT, Haroutunian V (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71:750–757

    Article  PubMed  CAS  Google Scholar 

  • Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334

    Article  PubMed  CAS  Google Scholar 

  • Benedict C, Kern W, Schultes B, Born J, Hallschmid M (2008) Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab 93:1339–1344

    Article  PubMed  CAS  Google Scholar 

  • Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, Marsden PK, Amiel SA (2002) The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 51:3384–3390

    Article  PubMed  CAS  Google Scholar 

  • Bodian D, Howe HA (1941) Experimental studies on intraneuronal spread of poliomyelitis virus. Bull Johns Hopkins Hosp 68:248–267

    Google Scholar 

  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nature Neurosci 5:514–516

    Article  PubMed  CAS  Google Scholar 

  • Cersosimo E, DeFronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423–436

    Article  PubMed  CAS  Google Scholar 

  • Chow HS, Chen Z, Matsuura GT (1999) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 88:754–758

    Article  PubMed  CAS  Google Scholar 

  • Clark WE, Gros L (1929) Anatomical investigation into the routes by which infections may pass from the nasal cavities into the brain. Ministry of Health Report on Puiblic Health and Medical Subjects, vol 54. London: H.M. Stationary Office

    Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 20:558–567

    PubMed  CAS  Google Scholar 

  • Convit A, Wolf OT, Tarshish C, de Leon MJ (2003) Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 100:2019–2022

    Article  PubMed  CAS  Google Scholar 

  • Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS, Craft S (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162:313–319

    PubMed  CAS  Google Scholar 

  • Corton JC, Anderson SP, Stauber A (2000) Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 40:491–518

    Article  PubMed  CAS  Google Scholar 

  • Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y, Luby J, Dagogo-Jack A, Alderson A (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 17:123–130

    Article  PubMed  CAS  Google Scholar 

  • Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease - Relationship to severity of dementia and apolipoprotein E genotype. Neurology 50:164–168

    PubMed  CAS  Google Scholar 

  • Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiat 56:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28:809–822

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Maffia P, Patel NS, Di Paola R, Ialenti A, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2004) Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol 483:79–93

    Article  PubMed  CAS  Google Scholar 

  • Czerniawska A (1970) Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryngol 70:58–61

    PubMed  CAS  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed  Google Scholar 

  • Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 169:453–459

    Article  PubMed  CAS  Google Scholar 

  • Djupesland PG, Skretting A, Winderen M, Holand T (2004) Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med 17:249–259

    Article  PubMed  CAS  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138

    PubMed  CAS  Google Scholar 

  • Faber HK (1938) The early lesions of poliomyelitis after intranasal inoculation. J Pediat 13:10–37

    Article  Google Scholar 

  • Faber WM (1937) The nasal mucosa and the subarachnoid space. Am J Anat 62:121–148

    Article  Google Scholar 

  • Fairbrother RW, Hurst EW (1930) The pathogenesis of, and propagation of the virus in experimental poliomyeltis. J Path Bact 33:17–45

    Article  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 602:161–164

    Article  PubMed  CAS  Google Scholar 

  • Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ, Cook DG, Peskind ER, Baker LD, Goldgaber D, Nie W, Asthana S, Plymate SR, Schwartz MW, Craft S (2005) Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 62:1539–1544

    Article  PubMed  Google Scholar 

  • Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131:3311–3334

    Article  PubMed  Google Scholar 

  • Frey WH 2nd (2002) Intranasal delivery: bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol 2:46–49

    Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    PubMed  CAS  Google Scholar 

  • Gopinath PG, Gopinath G, Kumar TCA (1978) Target site of intranasally sprayed substances and their transport across the nasal mucosa: A new insight into the intranasal route of drug delivery. Curr Ther Res 23:596–607

    Google Scholar 

  • Greenwood CE, Winocur G (2001) Glucose treatment reduces memory deficits in young adult rats fed high-fat diets. Neurobiol Learn Mem 75:179–189

    Article  PubMed  CAS  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978a) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829

    Article  PubMed  CAS  Google Scholar 

  • Havrankova J, Schmechel D, Roth J, Brownstein M (1978b) Identification of insulin in rat brain. Proc Natl Acad Sci USA 75:5737–5741

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:214–228

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. Faseb J 18:902–904

    PubMed  CAS  Google Scholar 

  • Hoyer S (2002) The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neural Transm 109:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Illum L (2002) Nasal drug delivery: new developments and strategies. Drug Discov Today 7:1184–1189

    Article  PubMed  CAS  Google Scholar 

  • Kern W, Born J, Schreiber H, Fehm HL (1999) Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 48:557–563

    Article  PubMed  CAS  Google Scholar 

  • Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    Article  PubMed  CAS  Google Scholar 

  • Kopf SR, Baratti CM (1999) Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol Learn Mem 71:50–61

    Article  PubMed  CAS  Google Scholar 

  • Kristensson K, Olsson Y (1971) Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol 19:145–154

    Article  PubMed  CAS  Google Scholar 

  • Kurochkin IV, Goto S (1994) Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Kuo YM, Huang CC, Hsu KS (2009) Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiol Aging 30:377–387

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR γ). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  • Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O'Brien PC, Palumbo PJ (1997) The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann NY Acad Sci 826:422–427

    Article  PubMed  CAS  Google Scholar 

  • Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63:1187–1192

    PubMed  Google Scholar 

  • Mayeux R, Honig LS, Tang MX, Manly J, Stern Y, Schupf N, Mehta PD (2003) Plasma Aβ40 and Aβ42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61:1185–1190

    PubMed  CAS  Google Scholar 

  • McDermott JR, Gibson AM (1997) Degradation of Alzheimer’s beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res 22:49–56

    Article  PubMed  CAS  Google Scholar 

  • Oh YK, Kim JP, Hwang TS, Ko JJ, Kim JM, Yang JS, Kim CK (2001) Nasal absorption and biodistribution of plasmid DNA: an alternative route of DNA vaccine delivery. Vaccine 19:4519–4525

    Article  PubMed  CAS  Google Scholar 

  • Olefsky JM (2000) Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest 106:467–472

    Article  PubMed  CAS  Google Scholar 

  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53:1937–1942

    PubMed  CAS  Google Scholar 

  • Paik JH, Ju JH, Lee JY, Boudreau MD, Hwang DH (2000) Two opposing effects of non-steroidal anti-inflammatory drugs on the expression of the inducible cyclooxygenase. Mediation through different signaling pathways. J Biol Chem 275:28173–28179

    PubMed  CAS  Google Scholar 

  • Park CR, Seeley RJ, Craft S, Woods SC (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68:509–514

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, Flynn ER (2004) Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 17:500–506

    Article  PubMed  CAS  Google Scholar 

  • Peila R, Rodriguez BL, Launer LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Morelli L, Cresto JC, Castano EM (2000) Degradation of soluble amyloid β-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurocheml Res 25:247–255

    Article  CAS  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  PubMed  CAS  Google Scholar 

  • Pietrowsky R, Struben C, Molle M, Fehm HL, Born J (1996a) Brain potential changes after intranasal vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiat 39:332–340

    Article  PubMed  CAS  Google Scholar 

  • Pietrowsky R, Thiemann A, Kern W, Fehm HL, Born J (1996b) A nose-brain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 21:559–572

    Article  PubMed  CAS  Google Scholar 

  • Qiu W, Walsh D, Ye Z, Vekrellis K, Zhang J, Podlisny M, Rosner M, Safavi A, Hersh L, Selkoe D (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273:32730–32738

    Article  PubMed  CAS  Google Scholar 

  • Reagan LP, Gorovits N, Hoskin EK, Alves SE, Katz EB, Grillo CA, Piroli GG, McEwen BS, Charron MJ (2001) Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proc Natl Acad Sci USA 98:2820–2825

    Article  PubMed  CAS  Google Scholar 

  • Sakane T, Akizuki M, Yoshida M, Yamashita S, Nadai T, Hashida M, Sezaki H (1991) Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol 43:449–451

    PubMed  CAS  Google Scholar 

  • Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT (2004) Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol 75:478–485

    Article  PubMed  CAS  Google Scholar 

  • Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW, Figlewicz DF, Kahn SE, Baskin DG, Greenwood MR, Porte D, Jr. (1990) Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats. Peptides 11:467–472

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Sato N, Hasegawa T, Kawaguchi T, Juni K (1994) Nasal absorption of zidovudine and its transport to cerebrospinal fluid in rats. Biol Pharm Bull 17:1135–1137

    PubMed  CAS  Google Scholar 

  • Shipley MT (1985) Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 15:129–142

    Article  PubMed  CAS  Google Scholar 

  • Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV (2001) Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci USA 98:3561–3566

    Article  PubMed  CAS  Google Scholar 

  • Sonnen JA, Larson EB, Brickell K, Crane PK, Woltjer R, Montine TJ, Craft S (2009) Different patterns of cerebral injury in dementia with or without diabetes. Arch Neurol 66:315–322

    Article  PubMed  Google Scholar 

  • Sudoh S, Frosch MP, Wolf BA (2002) Differential effects of proteases involved in intracellular degradation of amyloid β-protein between detergent-soluble and -insoluble pools in CHO-695 cells. Biochemistry 41:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Liu HR, Gao E, Teng ZP, Lopez BL, Christopher TA, Ma XL, Batinic-Haberle I, Willette RN, Ohlstein EH, Yue TL (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia. Circulation 108:2805–2811

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Frey WH 2nd (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40:907–946

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Emory CR, Ala TA, Frey WH 2nd (1995) Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692:278–282

    Article  PubMed  CAS  Google Scholar 

  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–496

    Article  PubMed  CAS  Google Scholar 

  • Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312

    Article  PubMed  CAS  Google Scholar 

  • Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362

    Article  PubMed  CAS  Google Scholar 

  • Vanhanen M, Koivisto K, Kuusisto J, Mykkanen L, Helkala EL, Hanninen T, Riekkinen P Sr., Soininen H, Laakso M (1998) Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care 21:398–402

    Article  PubMed  CAS  Google Scholar 

  • Wallum BJ, Taborsky GJ Jr,, Porte D Jr, Figlewicz DP, Jacobson L, Beard JC, Ward WK, Dorsa D (1987) Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab 64:190–194

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Jiang X, Lu W (2003) Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 263:1–7

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Jiang X, Lu W (2004) Intranasal delivery of methotrexate to the brain in rats bypassing the blood-brain barrier. Drug Deliv Technol 4:48–55

    Google Scholar 

  • Weiss P, Holland Y (1967) Neuronal dynamics and axonal flow, II. The olfactory nerve as a model test object. Proc Natl Acad Sci USA 57:258–264

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24:11120–11126

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  PubMed  CAS  Google Scholar 

Download references

Aknowledgments

This work was supported by the Department of Veterans Affairs, the National Institute on Aging (RO1 AG10880), the Institute for the Study of Aging, and GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Craft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Craft, S. (2010). The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease. In: Craft, S., Christen, Y. (eds) Diabetes, Insulin and Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04300-0_8

Download citation

Publish with us

Policies and ethics