Skip to main content

Visualizing Phylogenetic Treespace Using Cartographic Projections

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Abstract

Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B.L., Steel, M.: Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees. Annals of Combinatorics 5(1), 1–15 (2001)

    Article  Google Scholar 

  2. Amenta, N., Klingner, J.: Case study: visualizing sets of evolutionary trees. In: IEEE Symposium on Information Visualization, INFOVIS 2002, pp. 71–74 (2002)

    Google Scholar 

  3. Billera, L.J., Homes, S.P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Advances in Applied Mathematics 27(4), 733–767 (2001)

    Article  Google Scholar 

  4. Carroll, H., Ebbert, M., Clement, M., Snell, Q.: PSODA: Better tasting and less filling than PAUP. In: Proceedings of the 4th Biotechnology and Bioinformatics Symposium (BIOT 2007), October 2007, pp. 74–78 (2007)

    Google Scholar 

  5. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L., et al.: Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL. Annals of the Missouri Botanical Garden 80(3), 528–580 (1993)

    Article  Google Scholar 

  6. Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 296–310. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Clark, A.G., Weiss, K.M., Nickerson, D.A., Taylor, S.L., Buchanan, A., Stengard, J., Salomaa, V., Vartiainen, E., Perola, M., Boerwinkle, E., Sing, C.F.: Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. American Journal of Human Genetics 63, 595–612 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crandall, K.A.: Multiple interspecies transmissions of human and simian t-cell leukemia/lymphoma virus type i sequences. Molecular Biology and Evolution 13, 115–131 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Day, W.H.E., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences 81(33-42), 299 (1986)

    Google Scholar 

  10. DeSalle, R.: Molecular approaches to biogeographic analysis of Hawaiian Drosophilidae. In: Wagner, W.L., Funk, V. (eds.) Hawaiian Biogeography, pp. 72–89 (1995)

    Google Scholar 

  11. Ganapathy, G., Ramachandran, V., Warnow, T.: Better Hill-Climbing Searches for Parsimony. In: Workshop on Algorithms in Bioinformatics (2003)

    Google Scholar 

  12. Guindon, S., Gascuel, O.: A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology 52(5), 696–704 (2003)

    Article  PubMed  Google Scholar 

  13. Herring, B.L., Bernardin, F., Caglioti, S., Stramer, S., Tobler, L., Andrews, W., Cheng, L., Rampersad, S., Cameron, C., Saldanha, J., et al.: Phylogenetic analysis of WNV in North American blood donors during the 2003-2004 epidemic seasons. Virology (2007)

    Google Scholar 

  14. Hillis, D.M., Heath, T.A., St. John, K.: Analysis and Visualization of Tree Space. Systematic Biology 54(3), 471–482 (2005)

    Article  PubMed  Google Scholar 

  15. Hultman, A.: The topology of spaces of phylogenetic trees with symmetry. Discrete Mathematics 307(14), 1825–1832 (2007)

    Article  Google Scholar 

  16. Jenkins, B.: A new hash function for hash table lookup. Dr. Dobb’s Journal (1997)

    Google Scholar 

  17. Keith, J.M., Adams, P., Ragan, M.A., Bryant, D.: Sampling phylogenetic tree space with the generalized Gibbs sampler. Mol. Phylogenet Evol. 34(3), 459–468 (2005)

    Article  PubMed  Google Scholar 

  18. Meier, R., Ali, F.B.: Software Review. The newest kid on the parsimony block: TNT (Tree analysis using new technology). Systematic Entomology 30(1), 179 (2005)

    Article  Google Scholar 

  19. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Sing, C.F., Haviland, M.B., Zerba, K.E., Templeton, A.R.: Application of cladistics to the analysis of genotype-phenotype relationships. European Journal of Epidemiology 8, 3–9 (1992)

    Article  PubMed  Google Scholar 

  21. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Sundberg, K., Clement, M., Snell, Q.: On the use of cartographic projections in visualizing phylogenetic treespace. Technical report, Brigham Young University (2009), http://dna.cs.byu.edu/papers/pdf/TR_BYU_CSL-2009-1.pdf

  23. Swofford, D.L.: PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland (2003)

    Google Scholar 

  24. Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, The University of Texas at Austin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sundberg, K., Clement, M., Snell, Q. (2009). Visualizing Phylogenetic Treespace Using Cartographic Projections. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics