Skip to main content

Synthesis, Characterization and Antiviral Activity of Cyanoacrylates and Derivatives

  • Chapter
Environment-Friendly Antiviral Agents for Plants
  • 723 Accesses

Abstract

A series of novel cyanoacrylate derivatives 2.2a-2.2t containing phosphonyl moieties were synthesized by treatment of alkyl 2-cyano-3,3-dimethylthioacrylates and dialkyl phosphites with NaH in THF solvent. This method is easy and generates the title compounds in moderate yields. The structures were verified by spectroscopic data. In the antifungal bioassay, the title compounds 2.2d and 2.22t were found to possess the highest activities against three kinds of fungi in vitro. The bioassay results showed that these title compounds exhibited moderate to good anti-TMV bioactivity. Title compounds 2.2a and 2.2b showed better biological activity than their structurally related analogues 2.2c-2.2t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay S P, Omalley P J Z. Molecular modelling of the interaction between DCMU and the Q(B)-binding site of photosystem-II. Z Naturforsch 1993, 48c, 191–198.

    Google Scholar 

  2. Huppatz J L, Phillips J N, Rattigan B M. Cyanoacrylates. Herbicidal and photo synthetic inhibitory activity. Agric. Biol. Chem 1981, 45(12), 2769–2773.

    CAS  Google Scholar 

  3. Wang Q M, Li H, Li Y H, et al. Synthesis and herbicidal activity of 2-cyano-3-(2-chlorothiazol-5-yl) methylaminoacrylates. J. Agric. Food. Chem 2004, 52, 1918–1922.

    Article  CAS  Google Scholar 

  4. Wang L G, Wang F Y, Diao Y M, et al. Synthesis and fungicidal activity of ethyl 2-cyano-3-substituted-amino-3-(2-methylphenyl)propenoate. Chin. J. Org. Chem 2005, 25, 1254–1258.

    CAS  Google Scholar 

  5. Song B A, Yang S, Zhong H M, et al. Synthesis and bioactivity of 2-cyanoacrylates containing a trifluoromethylphenyl moiety. J. Fluorine Chem 2005, 126, 87–92.

    Article  CAS  Google Scholar 

  6. Zhang H P, Song B A, Zhong H M, et al. Synthesis of 2-cyanoacrylates containing pyridinyl moiety under ultrasound irradiation. J. Heterocyclic Chem 2005, 42, 1211–1214.

    Article  CAS  Google Scholar 

  7. Song B A, Zhang H P, Wang H, et al. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. J. Agric. Food Chem 2005, 53, 7886–7891.

    Article  CAS  Google Scholar 

  8. Boehner B, Hall R G. Preparation of pyrazolylphosphonate pestcides. DE 4139849, 1992.

    Google Scholar 

  9. Cross H, Koeckritz A, Scheidecker S, et al. DE 4108345, 1992.

    Google Scholar 

  10. Fouque D, About-Jaudet E, Collignon N. Alpha-pyrazotyl-alkylphosphonates. Part II: a simple and efficient synthesis of diethyl-l-(pyrazol-4-yl)-alkyl phosphonates. Synth. Commun 1995, 25, 3443–3455.

    Article  CAS  Google Scholar 

  11. Huang W S, Yuan C Y. Studies on organophosphorus compounds 92: a facile synthesis of l-substituted-5-trifluoromethylimidazole-4-phosphonates. Synthesis 1996, 4, 511–513.

    Article  Google Scholar 

  12. Lu R J, Yang H Z. A novel approach to phosphonyl-substituted heterocyclic system (I). Tetrahedron Lett 1997, 8, 5201–5204

    Article  Google Scholar 

  13. Chen K, Hu F Z, Zhang J H, et al. Progress in the synthetic methods of phosphonyl heterocyclic compouds. Chin. J. Org. Chem 2000, 20, 866–873.

    CAS  Google Scholar 

  14. Chen K, Yang H Z, Liu Z, et al. Synthesis of novel phosphonyl/ S-methyl ketene thioacetals and N-substituted phosphonyl/S-methyl thiocarbonates under microwave irradiation. Chin. J. Org. Chem 2001, 21, 690–692.

    CAS  Google Scholar 

  15. McCombie H, Sauders B C, Stacey G J. Esters containing phosphorus Part I. J. Chem. Soc 1945, 380–382.

    Google Scholar 

  16. Liu H Y, Sha Y L, Dai G X. et al. Synthesis of novel derivatives of 2-cyano-3-methylthio-3′-benzylamino-acrylates (acryl, amides) and their biological activity. Phosphorus, Sulfur Silicon 1999, 148, 235–241.

    Article  CAS  Google Scholar 

  17. Erwin D C, Sims J J, Borum D E, et al. Detection of the systemic fungicide, thiabendazole, in cotton plants and soil by chemical analysis and bioassay. Phytopathology 1971, 61, 964–967.

    Article  CAS  Google Scholar 

  18. Yang S, Gao X W, Diao C L, et al. Synthesis and antifungal activity of novel chiral α-amino-phosphonates containing fluorine moiety. Chin. J. Chem 2006, 24, 1581–1588.

    Article  CAS  Google Scholar 

  19. Gooding G V Jr, Hebert T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285–1290.

    Google Scholar 

  20. McFadden H G, Craig D C, Huppatz J L, et al. X-Ray Structure analysis of a cyanoacrylate inhibitor of photosystem II electron transport. Z. Miturforsch 1991, 46C, 93–98.

    Google Scholar 

  21. Wang Q M, Sun H K, Cao H Y, et al. Synthesis and herbicidal activity of 2-cyano-3-substituted-pyridinemethyl amino aery lates. J. Agri. FoodChem 2003, 17, 5030–5035.

    Article  Google Scholar 

  22. Sun H K, Wang Q M, Huang R Q, et al. Synthesis and biological activity of novel cyanoaerylates containing ferrocenyl moiety. J. Organometallic Chem 2002, 655, 182–185.

    Article  CAS  Google Scholar 

  23. Jablonkai I. Alkylating reactivity and herbicidal activity of chloroacetamides. Pest Manag. Sei 2003, 59, 443–450.

    Article  CAS  Google Scholar 

  24. 23.a)Nizamuddin M G, Manoj K S. Synthesis and fungicidal activity of substituted pyrazolo[5,4-b] pyridine/pyrid-6-ones and pyrazolo[5,4-d]thiazines. Bull. Chim. Farm, 2001, 140(5), 311–315

    CAS  Google Scholar 

  25. b)Wang Q M, Sun H K, Huang R Q, et al. Synthesis and herbicidal activity of (Z)-ethoxyethyl 2-cyano-3-(2-methylthio-5-pyridylmethylamino) acrylates. Heteroatom Chem 2004, 15(1), 67–70.

    Article  CAS  Google Scholar 

  26. Kuzmin V E, Lozitsky V P, Kamalov G L, et al. Analysis of the structure — anticancer activity relationship in a set of Schiff bases of macrocyclic 2, 6-bis(2-and 4-formylaryloxymethyl)pyridines. Acta Biochimica Polonica 2000, 47(3), 867–875.

    CAS  Google Scholar 

  27. Liu H Y, Lu R J, Chen K, et al. Studies on bio-rational design of photosystem II Inhibitors (VII) synthesis and hill inhibitory activity of ethyl 2-cyano-3-methylthio-3-arylaminoacrylates. Chem. J. Chin. Univ 1999, 20(3), 711–714.

    Google Scholar 

  28. Denizot F, Long R. J Rapid colorimetric assay for cell growth and survival. Immunol Methods 1986, 89(2), 271–277.

    Article  CAS  Google Scholar 

  29. Skehan P, Storeng R, Scadiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst 1990, 82, 1107–1112.

    Article  CAS  Google Scholar 

  30. Huppatz J L, Philips JN. Cyanoacrylate inhibitors of the hill reactions. IV. Binding characteristics of the hydrophobic domain. Z. Naturforsch 1987, 42c, 679–683.

    Google Scholar 

  31. 29.a) Huppatz J L. Quantifying the inhibitor-target site interactions of photosystem II herbicides. Weed Sci 1996, (44), 743–748

    CAS  Google Scholar 

  32. Phillips J N, Banham W K. Hydrogen Bonding of Cyanoacrylates with the D1 peptide. Z. Naturforsch 1993, 48c, 132–135

    Google Scholar 

  33. Yu S. Y, Li Z M. Synthesis and biological activities of 2-cyano-3-6-chloro-3-pyridylmethyl)amino-3-aliphatic amine acrylonitrile. Chin. J. Pestic. Sci 2001, 3(3), 18

    CAS  Google Scholar 

  34. Yu, S. Y; Li, Z. M. Synthesis of 2-cyano-3-[(6-chloro)-3-pyridylmethyl]-3-aliphatic amine ethyl acrylate. Chin. J. Pestic. Sei 2002, 4(3), 79

    CAS  Google Scholar 

  35. Zhao Y G, Hung R Q, Cheng J R. Synthesis and biological activity of biscyano substituted acyclic ketene amines containing 2-chloro-5-pyridylmethyl group. Chem. J. Chin. Univ 1998, 19(10), 1620.

    CAS  Google Scholar 

  36. Liu H Y, Yang G F, Lu R J, et al. The crystalline and molecular structure of ethyl 3-benzyl amino-2-cyano-3-methylthioacrylate. Chem. J. Chin. Univ 1998, 19, 899.

    CAS  Google Scholar 

  37. Bose A K, Manilas M S, Ganguly S N, et al. More chemistry for less pollution: Applications for process development. Synthesis 2002, 11, 1578–1591

    Article  Google Scholar 

  38. Varma R S. Solvent-free organic synthesis. Green Chemistry 1999, 1, 43–55.

    Article  CAS  Google Scholar 

  39. Jin L H, Zhong H M, Song B A, et al. Advance in the synthesis and biological activity of 2-cyanoacrylate. Chin. J. Synth. Chem 2005, 13(2), 113–117.

    CAS  Google Scholar 

  40. Yang S, Jin L H, Song B A, et al. The preparation method and bioactivity of cyanoacrylate derivatives. CN 1603307A, 2004.

    Google Scholar 

  41. Charles W H, Matthew E M, Isiah M W. Separation of the insecticidal Pyrethrin ester by capillary electro chromatography. J Chromatography A 2001, 905, 319–327.

    Article  Google Scholar 

  42. Hayes B L. Recent advances in microwave-ass isted synthesis. Aldrichimica Acta 2004, 37, 66–77.

    CAS  Google Scholar 

  43. Liu X, Huang R Q, Cheng M R, et al. Synthesis and bioactivity of S, N-ketene acetal containing pyridine methylene. Chem. J. Chin. Univ 1999, 20, 1404–1408.

    CAS  Google Scholar 

  44. Grozinger K. Synthesis of 3-amino-2-chloro-4-methylpyridine from acetone and ethyl cyanoacetate. US 6136982, 2000; Chem. Abstr 2000, 133, 120236.

    Google Scholar 

  45. Sheldrick G M. Program for empirical absorption correction of area detector data. University of Gottingen, Germany, 1996.

    Google Scholar 

  46. Sheldrick G M. SHELXTL V5. 1, Software reference manual, Bruker AXS, Inc., Madison, Wisconsin, USA, 1997.

    Google Scholar 

  47. Wilson A. J. International table for X-ray crystallography, vol. C, Kluwer Academic Publishers, Dordrecht, Tables 6. 1. 1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222) respectively, 1992.

    Google Scholar 

  48. Li S Z, Wang D M, Jiao S M. Pesticide experiment methods-fungicide sector. Agricuture Press of China, Beijing, 1991, 93–94.

    Google Scholar 

  49. Ouyang G P, Song B A, hang H P, et al. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. Molecules 2005, 10, 1351–1357.

    Article  CAS  Google Scholar 

  50. Hari V, Das P. in plant dise ase virus control; Hadidi A, Khetarpal R K, Koganezawa H, Ed.; APS Press: St. Paul, 1998, 417–427.

    Google Scholar 

  51. Shadle G L, Wesley S V, Korth K L, et al. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-pheny lalanine ammonia-lyase. Phytochemistry, 2003, 64, 153–161.

    Article  CAS  Google Scholar 

  52. He Z P. in A guide to experiments of chemical control for crops;He Z P., Ed.; Beijing Agricultural University Press: Beijing, 1933, 30–31. 46. Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.). Plant Physiol 1994, 106, 53-60. 47. Beauchamp C, Fridovich J. Superoxide dismutase. Improved assay and an assay applicable to acrylamide gels. Anal. Biochem 1971, 444, 276-278.

    Google Scholar 

  53. Yamakawa H, Kamada H, Satoh M, et al. Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogen es is-related proteins and resistance. Plant Physiol 1998, 118, 1213.

    Article  CAS  Google Scholar 

  54. Anand A, Zhou T, Trick H N, et al. Greenhouse and field testing of transgenic wheat plants stable expressing genes for thaumati-like protein, chitinase and glucanase against Fusarium graminearum. J. Exp. Bot 2003, 54, 1101–1111.

    Article  CAS  Google Scholar 

  55. Mohamed F, Lydia F, Masumi I. et al. Expression of potential defense responses of Asian and European pears to infection with Venturia nashicola Physiol. Mol. Plant Path 2004, 64(6), 319.

    Article  Google Scholar 

  56. Yuan J S, Reed A, Chen F, et al. Statistical analysis of real-time PCR data. BMC. Bioinform 2006, 7, 85.

    Article  Google Scholar 

  57. Milosevic N, Slusarenko A J. Active oxygen metabolism and lignification in the hypersensitive response inbean. Physiol Plant Pathol 1996, 49, 143–158.

    Article  Google Scholar 

  58. Wang Y C, Hu D W, Zhang Z G, et al. Purification and immun ocy to localization of a novel Phytophthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiol. Mol. Plant Path 2003, 63, 223–232.

    Article  CAS  Google Scholar 

  59. Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance. Annu Rev Phytopathol 1997, 35, 235–270.

    Article  CAS  Google Scholar 

  60. Malamy J, Carr J P, Klessigm D, et al. Salilcylic acid-a likely endogenous singnal in the resistance responses of tobacco to viral infection. Science 1990, 250, 1002–1004.

    Article  CAS  Google Scholar 

  61. Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant. Physiol. Plant. Mol. Biol 1989, 40, 347–369.

    Article  Google Scholar 

  62. Rusmussen J B, Hammersschmidt R, Zook M N. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringaepv. Syringae. Plant Physiol 1991, 97, 1342.

    Article  Google Scholar 

  63. Van Loon LC. Pathogen esis-related proteins. Plant Mol. Biol 1985, 4, 111–116.

    Article  Google Scholar 

  64. Tornero P, Gadea J, Conejero V, et al. Two PR1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol. Plant-Microbe Interact 1997, 10, 624–634.

    Article  CAS  Google Scholar 

  65. Cheong N E, Choi Y O, Kim W Y, et al. Purification of an antifungal PR-5 protein from flower buds of brassicacampestris and cloning of Its Gene. Physiol Mol. Plant Pathol, 1997, 101, 583–590.

    CAS  Google Scholar 

  66. Huang W, Yang G F. Microwave-assisted, one-pot syntheses and fungicidal activity of polyflu orinated 2-benzylthiobenzothiazo. Bioorg. Med. Chem 2006, 14, 8280–8285.

    Article  CAS  Google Scholar 

  67. Zhou Z Z, Yang G F. Insecticidal lead identification by screening benzopyrano[3, 4-c]pyrazol-3-one library constructed from multiple-parallel synthesis under microwave irradiation. Bioorg. Med. Chem 2006, 14, 8666–8674

    Article  CAS  Google Scholar 

  68. Liu Y, Li H, Zhao Q, et al. Synthesis and herbicidal activity of 2-cyano-3-(2-fluoro-5-pyridyl) methylaminoacrylates. J. Fluorine Chem 2005, 126, 345–348

    Article  CAS  Google Scholar 

  69. Liu Y, Cai B, Li Y, Song H, et al. Synthesis, crystal structure, and biological activities of 2-cyanoacrylates containing furan or tetrahydrofuran moieties. J. Agric. Food Chem 2007, 55, 3011–3017

    Article  CAS  Google Scholar 

  70. Yang G F, Liu Z M, Liu J C, et al. Synthesis and properties of novel α-(1, 2,4-triazolo-[l,5-a]pyrimidine-2-oxyl)phosphonate derivatives. Heteroatom Chem 2000, 11, 313–316.

    Article  CAS  Google Scholar 

  71. Liu Y X, Wei D G, Zhu Y R, et al. Synthesis, herbicidal activities, and 3D-QSAR of 2-cyanoacrylates containing aromatic methylamine moieties. J. Agric. Food Chem 2008, 56, 204–212.

    Article  CAS  Google Scholar 

  72. McFadden H G, Phillips J N. Synthesisanduseofradiolabeled cyanoacrylate probes of photo system II herbicide binding site. Z. Naturforsch 1990, 45C, 196–202.

    Google Scholar 

  73. Lv Y P, Wang X Y, Song B A, et al. Synthesis, antiviral and antifungal bioactivity of 2-cyanoaery late derivatives containing phosphonyl moieties. Molecules 2007, 12, 965–978.

    Article  CAS  Google Scholar 

  74. Chen Z, Wang X Y, Song B A, et al. Synthesis and antiviral activities of novel chiral cyanoacrylate derivatives with (E) configuration. Bioorg. Med. Chem 2008, 16, 3076–3083.

    Article  CAS  Google Scholar 

  75. Gioia P 1, Chuah P H, Sclapari T. Herbicidal composition comprising an aminophosphate or aminophosphonate salt. WO 2007054540, 2007.

    Google Scholar 

  76. Kafarski P, Lejczak B. Biological activity of aminophosphonic acids. Phosphorus Sulfur 1991, 63, 193–215.

    Article  CAS  Google Scholar 

  77. Jin L H, Song B A, Zhang G P, et al. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-l-(fluorophenyl)-O,O-dialkyl-α-amino p ho sphonates. Bioorg. Med. Chem. Lett 2006, 16, 1537–1543.

    Article  CAS  Google Scholar 

  78. Kafarski P, Lejczak B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anti-Cancer Agents 2001, 1, 301–312.

    Article  Google Scholar 

  79. Lintunen T, Yli-Kauhaluoma J T. Synthesis of aminophosphonate haptens for an aminoacylation reaction between methyl glucoside and a-alanyl ester. Bioorg. Med. Chem. Lett 2000, 10, 1749–1750.

    Article  CAS  Google Scholar 

  80. Liu W, Rogers C J, Fisher A J, et al. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow, tight binding inhibition. Biochem 2002, 41, 12320–12328.

    Article  CAS  Google Scholar 

  81. Pan W D, Ansiaux C, Vincent S P. Synthesis of acyclic galactitol-and ryxitol-aminophosphonates as inhibitors of UDP-galactopyranose mutase. Tetrahedron Letters 2007, 48, 4353–4356.

    Article  CAS  Google Scholar 

  82. Deng S L, Baglin I, Nour M, et al. Synthesis of ursolic phosphonate derivatives as potential anti-HIV agents. Phosphorus, Sulfur and Silicon and the RelatedElements 2007, 182, 951–967.

    Article  CAS  Google Scholar 

  83. Zhang G P, Song B A, Xue W, et al. Synthesis and biological activities of novel dialkyl l-(4-trifluoromethyl-phenylamino)-1-(4-trifluoromethyl or 3-fluorophenyl) methylphosphonate. J. Fluorine Chem 2006, 127, 48–53.

    Article  CAS  Google Scholar 

  84. Xu YS, YanK, Song B A, et al. Synthesis and antiviral bioactivities of α-aminophosphonates containing alkoxyethyl moieties. Molecules 2006, 11, 666–676.

    Article  CAS  Google Scholar 

  85. Song B A, Wu YL, Huang R M. Synthesis of plant virucidal fluorine containing α-aminophosphonates. CN 1432573, 2003; Patent approval certificate. No. ZL02113252. 6; Chem. Abstr 2005, 142, 482148.

    Google Scholar 

  86. Song B A, Zhang G P, Hu D Y, et al. N-substituted benzothiazolyl-1-substituted phenyl-O, O-dialkyl-alpha-amino phosphonate ester derivatives preparation and application. CN 1687088, 2005; Patent approval certificate. No. ZL0200510003041. 7; Chem. Abstr 2006, 145, 145879.

    Google Scholar 

  87. Li C H, Song B A, Yan K, et al. One Pot Synthesis of α-aminophosphonates containing bromo and 3, 4, 5-trimethoxybenzy l groups under solvent-free conditions. Molecules 2007, 12, 163–172.

    Article  CAS  Google Scholar 

  88. Hu D Y, Wan Q Q, Yang S, et al. Synthesis and antiviral activities of amide derivatives containing α-aminophosphonate moiety. J. Agric Food Chem 2008, 56(3), 998–1001.

    Article  CAS  Google Scholar 

  89. Huang R Q, Wang H, Zhou J. Preparation of organic intermediate; Chemical industry press of China, Beijing, China, 2001, 224–225.

    Google Scholar 

  90. Kaboudin B, Moradi K. A simple and convenient procedure for the synthesis of 1-aminophosphonates from aromatic aldehydes. Tetrahedron Lett 2005, 46, 2989–2991.

    Article  CAS  Google Scholar 

  91. Long N, Cai X J, Song B A, et al. Synthesis and antiviral activities of cyanoacrylate derivatives containing an alpha-aminophosphonate moiety. J. Agric Food Chem 2008, 56(13), 5242–5246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Chemical Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, B., Jin, L., Yang, S., Bhadury, P.S. (2010). Synthesis, Characterization and Antiviral Activity of Cyanoacrylates and Derivatives. In: Environment-Friendly Antiviral Agents for Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03692-7_3

Download citation

Publish with us

Policies and ethics