Skip to main content

Mechanical and Tribological Properties of Titanium Reinforced Polybenzimidazole Composites

  • Conference paper
Advanced Tribology
  • 174 Accesses

Abstract

Polybenzimidazole (PBI) was synthesized and characterized by means of Fourier transformation infrared (FUR) spectrometer, nuclear magnetic resonance (1H-NMR) spectroscopy, elemental analysis, and gel permeation chromatography (GPC). The resulting PBI product was used as the polymer matrix to prepare composites reinforced with titanium (abridged as PBI/Ti) using hot-press sintering in vacuum. A scanning electron microscope (SEM) was used to observe the morphology of the composite samples, while a Rockwell hardness tester and a pin-on-disk friction and wear tester were performed to evaluate the mechanical and tribological properties of the bulk PBI composites. It was found that the PBI composites had a relatively low density of 1.3–1.7 g/cm3 and high Rockwell hardness of 60 I IRA. The introduction of Ti as the reinforcing agent contributed to improving the mechanical properties of the PBI composites, with the maximum compressive strength to be as high as 2980.58 MPa. Moreover, the PBI/Ti composites had small friction coefficients as slid against AISI-1045 steel in a ball-on-disk configuration, and the friction coefficients decreased with increasing temperature. The wear resistance of PBI. however, was reduced slightly by the incorporation of the Ti powders, and increased wear rates were recorded for the PBI/Ti composites at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung T, Xu Z, Huan C, Halo formation in asymmetric polycthcrimidc and polybenzimidazole blend hollow fiber membranes. Journal of Polymer Science Part B: Polymer Physics 1999; 37; 1575.

    Article  Google Scholar 

  2. Chung TS, Xua ZL. Asymmetric hollow fiber membranes prepared from miscible polybenzimidazole and polyetherimide blends. Journal of Membrane Science 1998; 35–47.

    Google Scholar 

  3. Chung I, Herold F. High-modulus polyaramide and polybenzimidazole blend fibers. Polymer Engineering and Science 1991; 31: 1521.

    Article  Google Scholar 

  4. Haider M, Chenevey E, Thermo-oxidatively stabilized polybenzimidazole containing articles, US Patent 5.277.981; 1994.

    Google Scholar 

  5. Onorato F, Sansone M, Schlask A, Wet spun hydroxyethylated polybenzimidazole fibers. US Patent 4,814,228; 1989.

    Google Scholar 

  6. Kim C, Park SH, Characteristics of supercapacitor electrodes of PBI-based carbon nonofiber web prepared by electrospinning. Electrochimica Acta 2004; 50:877.

    Article  Google Scholar 

  7. Kim J, Reneker D, Mechanical properties of composites using ultrafine elect rospun fibers. Polymer Composites 1999; 20: 124.

    Article  Google Scholar 

  8. Kim J, Wneker D. Polybenzimidazole nanofiber produced by electrospinning. Screen 1999; 39: 849.

    Google Scholar 

  9. Musto P, Karasz F, MacKnight W. Hydrogen bonding in polybenzimidazolc-polyimidc systems: a Fourier-transform infrared investigation using low-molecular-weight monofunctional probes. Polymer 1988: 30: 1012.

    Article  Google Scholar 

  10. Cho J, Park M, Choi J, Ji B, Han S, Lyoo W, Miscible blends of nitrosubstituted polybenzimidazole and polyetherimide. Journal of Polymer Science Part B: Polymer Physics 2001; 39: 1778.

    Article  Google Scholar 

  11. Choe S, Karasz F, MacKnight W, Phase behaviour in miscible polybenzimidazole/polyctherimide blends. Contemporary Topics in Polymer Science 1988: 6: 493.

    Google Scholar 

  12. Natarajan K, Kumar R, Reddy P, Gowda N, Rao R. Thermal and toughness property studies on a polybenzimidazole-modified epoxy resin system. Polymer International 2000: 49: 1321.

    Article  Google Scholar 

  13. Dunay M. Adhesive composition. US Patent 3.539.523: 1970.

    Google Scholar 

  14. Chung T, Schlask A, Kurschus D, Stable solution of polybenzimidazole and polysulfons blends, US Patent 5.208.298; 1993.

    Google Scholar 

  15. Xue G, Guo S, Qian Y, Interfacial modification of polymer/metal joints by a two-component coupling system of polybenzimidazole and 2-mercaptobenzimidazole, Applied Surface Science 1995; 84: 351.

    Article  Google Scholar 

  16. Carron K, Lewis M, Dong J, Ding J, Xue G, Chen Y. Surface-enhanced Raman scattering and cyclic voltammetry studies of synergetic effects in the corrosion inhibition of copper by polybenzimidazole and mercaptobenzimidazole at high temperature. Journal of Materials Science 1993: 28: 4099.

    Article  Google Scholar 

  17. Xue G, Dong J, Wu P. Surface-enhanced Raman scattering study of polymer on metals III. Chemisorbcd polybenzimidazole and its corrosion-inhibiting properties at high temperature. Journal of Polymer Science Part B: Polymer Physics 1992; 30: 1097.

    Article  Google Scholar 

  18. Xue G, Dong J, Zhang J, Surface-enhanced Raman scattering study of polymer on metal-II. Molecular chain orientation of polybenzimidazole and poly(L-histidine) and its transition. Macromoleculcs 1991: 24: 4195.

    Article  Google Scholar 

  19. Kuder J, Method for producing a corrosion resistant article by applying a polybenzimidazole coating. US Patent 5,089,304; 1992.

    Google Scholar 

  20. Sun H, Venkatasubramanian N, Houtz M, Mark J, Arnold F. Study of modified polysulfone/polybenzimidazole composites and their application as microcellular foams. Polymer Preprints (USA) 2002; 43: 471.

    Google Scholar 

  21. Sun H, Venkatasubramanian N, Houtz M, Mark J, Arnold F, Microcellular foams from aminated polysulfone/polybenzimidazole molecular composites. Polymer Preprints 2003; 44: 1118.

    Google Scholar 

  22. Pu H, Liu Q, Qiao L, Yang Z, Studies on proton conductivity of acid doped polybenzimidazole/polyimide and polybenzimidazole/polyvinylpyrrolidone blends. Polymer Engineering and Science 2005; 45: 1395.

    Article  Google Scholar 

  23. Wainright J, Wang J, Weng D, Savincll R, Litt M, Acid-doped polybenzimidazoles: A new polymer electrolyte. Journal of the Electrochemical Society 2006: 142: 121.

    Article  Google Scholar 

  24. Bouchet R, Miller S, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 2001; 145:69.

    Article  Google Scholar 

  25. Fontanella J, Wintersgill M, High pressure electrical conductivity studies of acid doped polybenzimidazole, Electrochimica Acta 1998:43: 1289.

    Article  Google Scholar 

  26. Schechter A, Savinell RF, Imidazole and 1-methyl-irnidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 2002; 147: 181.

    Article  Google Scholar 

  27. Pu H, Liu Q, Methanol permeation and proton conductivity of acid-doped poly(N-cthylbcnzimidazolc) and poly(N-methylbenzimidazole), Journal of Membrane Science 2004; 241: 169.

    Article  Google Scholar 

  28. Asensio JA, Borros S. Proton-conducting membranes based on poly(2.5-bcnzimidazolc) (ABPBI) and phosphoric acid prepared by direct acid casting. Journal of Membrane Science 2004; 241; 89.

    Article  Google Scholar 

  29. Gomez-Romero P, Asensio JA. Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomoly bdic acid doped poly(2,5-benzimidazole)-(ABPBI-H3PMol2O40), Electrochimica Acta 2005: 50: 4715.

    Article  Google Scholar 

  30. Asensio JA, Borros S, Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells, Electrochimica Acta 2004; 49: 4461.

    Article  Google Scholar 

  31. Wang J, Wainright J, Savinell R, Litt M, A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte, Journal of Applied Electrochemistry 1996: 26: 751.

    Google Scholar 

  32. Wang J, Savinell R, Wainright J, Litt M, Yu H. A 112/02 fuel cell using acid doped polybenzimidazole as polymer electrolyte, Electrochimica Acta 1996; 41: 193.

    Article  Google Scholar 

  33. Hasiotis C, Qingfeng L, Deimede V, Kallitsis J, Kontoyannis C, Bjerrum N, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. Journal of the Electrochemical Society 2006; 148: 513.

    Article  Google Scholar 

  34. Wainright J, Wang J, Savinell R. Direct methanol fuel cells using acid doped polybenzimidazole as apolymer electrolyte. Energy Conversion Engineering Conference, 1996. IECEC 96, Proceedings of the 31st Intersociety 1996; 2.

    Google Scholar 

  35. Xiao L, Zhang H, Scanion E, Ramanathan L, Choe E, Rogers D, Apple T, Benicewicz B. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chem. Mater 2005; 17: 5328.

    Article  Google Scholar 

  36. Glipa X, Bonnet B, Mula B, Jones D, Roziere J. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. Journal of Material Chemistry 1999; 9: 3045.

    Article  Google Scholar 

  37. Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I, Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes. Chemistry of Materials 2004; 16: 604.

    Article  Google Scholar 

  38. Asensio J, Borros S, Gomez-Romero P. Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. Journal of Polymer Science Part A: Polymer Chemistry 2002; 40: 3703.

    Article  Google Scholar 

  39. He R, Li Q, Xiao G, Bjerrum NJ, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science 2003; 226: 169.

    Article  Google Scholar 

  40. Pu H, Meyer W, Wegner G. Proton transport in polybenzimidazole blended with H3PO4 or H1SO4, Journal of Polymer Science Part B: Polymer Physics 2002; 40: 663.

    Article  Google Scholar 

  41. Suffredini L, Sintered polymers, US Patent 3,340,325; 1967

    Google Scholar 

  42. Ward B, Alvarez E, Blake R. Process of making a sintered polybenzimidazole article, US Patent 4,861,537; 1989.

    Google Scholar 

  43. Sasaki Y, Kurisaki M. Process for manufacturing sintered polybenzimidazole article, US Patent 5,770,142; 1998.

    Google Scholar 

  44. Niwa N, Sasaki Y, Method for producing polybenzimidazole sintered compact. US Patent 6.593,449; 2003.

    Google Scholar 

  45. Vogel H, Marvel C, Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science 1964; 511–539.

    Google Scholar 

  46. Iwakura Y, Uno K, Polyphenylenebenzimidazoles, Journal of Polymer Science Part A 1964; 2: 2605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jianmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanhua, L., School, G., Huida, Z., Jianmin, C. (2009). Mechanical and Tribological Properties of Titanium Reinforced Polybenzimidazole Composites. In: Luo, J., Meng, Y., Shao, T., Zhao, Q. (eds) Advanced Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03653-8_136

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03653-8_136

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03652-1

  • Online ISBN: 978-3-642-03653-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics