Skip to main content

Nucleophilic Substitution Reactions at the Carboxyl Carbon

  • Chapter
Organic Mechanisms

Abstract

C=O double bonds occur in a series of different classes of compounds:

In aldehydes and ketones, which together are referred to as carbonyl compounds, C=O double bonds are part of a carbonyl group, C sp2=O. Carboxylic acids, carboxylic esters, and carboxylic amides, as well as all carboxylic acid derivatives used as acylating agents (see Section 6.3) are termed collectively as carboxyl compounds and are thereby distinguished from the carbonyl compounds. They contain a carboxyl group C sp2(=O)-Het. C=O double bonds are also part of carbonic acid derivatives Het1-C sp2(=O)-Het2. Carbonic acid derivatives contain a carboxyl carbon and a carboxyl oxygen, too. Thus, there is no difference between the nomenclatures for the C=O groups of carbonic acid derivatives and carboxylic acid derivatives. Finally, there are C sp =O double bonds; these occur in ketenes and isocyanates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

6.1

  • R. Sustmann, H.-G. Korth, “Carboxylic Acids,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Carboxylic Acids and Carboxylic Acid Derivatives (J. Falbe, Ed.), Vol. E5, 193, Georg Thieme Verlag, Stuttgart, 1985.

    Google Scholar 

  • R. Sustmann, H.-G. Korth, “Carboxylic Acid Salts,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Carboxylic Acids and Carboxylic Acid Derivatives (J. Falbe, Ed.), Vol. E5, 470, Georg Thieme Verlag, Stuttgart, 1985.

    Google Scholar 

  • R. Sustmann, H. G. Korth, “Carboxylic Acid Chlorides,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Carboxylic Acids and Carboxylic Acid Derivatives (J. Falbe, Ed.), Vol. E5, 587, Georg Thieme Verlag, Stuttgart, 1985.

    Google Scholar 

  • M. A. Ogliaruso, J. F. Wolfe, “Carbocylic Acids,” in Comprehensive Organic Functional Group Transformations (A. R. Katritzky, O. Meth-Cohn, C. W. Rees, Eds.), Vol. 5, 23, Elsevier Science, Oxford, U. K., 1995.

    Google Scholar 

6.2

  • R. S. Brown, A. J. Bennet, H. Slebocka-Tilk, “Recent Perspectives Concerning the Mechanism of H3O-and OH-Promoted Amide Hydrolysis,” Acc. Chem. Res, 1992, 25, 481–488.

    Article  CAS  Google Scholar 

  • E. Juaristi, G. Cuevas, “Recent Studies on the Anomeric Effect,“ Tetrahedron 1992, 48, 5019–5087.

    Article  CAS  Google Scholar 

  • A. J. Kirby (Ed.), “Stereoelectronic Effects,” Oxford University Press, Oxford, U. K., 1996.

    Google Scholar 

  • C. L. Perrin, “Is There Stereoelectronic Control in Formation and Cleavage of Tetrahedral Intermediates?,” Acc. Chem. Res, 2002, 35, 28–34.

    Article  CAS  Google Scholar 

6.3

  • K. B. Wiberg, “The Interaction of Carbonyl Groups with Substituents,” Acc. Chem. Res, 1999, 32, 922–929.

    Article  CAS  Google Scholar 

  • R. Sustmann, “Synthesis of Acid Halides, Anhydrides and Related Compounds,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 6, 301, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • P. Strazzolini, A. G. Giumanini, S. Cauci, “Acetic Formic Anhydride,” Tetrahedron 1990, 46, 1081–1118.

    Article  CAS  Google Scholar 

  • A. A. Bakibayev, V. V. Shtrykova, “Isoureas: Synthesis, Properties, and Applications,” Russ. Chem. Rev. 1995, 64, 929–938.

    Article  Google Scholar 

  • A. R. Katritzky, X. Lan, J. Z. Yang, O. V. Denisko, “Properties and Synthetic Utility of N-Substituted Benzotriazoles,” Chem. Rev, 1998, 98, 409–548.

    Article  CAS  Google Scholar 

  • G. Höfle, W. Steglich, H. Vorbrüggen, “4-Dialkylaminopyridines as Highly Active Acylation Catalysts,” Angew. Chem. Int. Ed. EnGl, 1978, 17, 569–583.

    Article  Google Scholar 

  • U. Ragnarsson, L. Grehn, “Novel Amine Chemistry Based on DMAP-Catalyzed Acylation,” Acc. Chem. Res, 1998, 31, 494–501.

    Article  CAS  Google Scholar 

  • R. Murugan, E. F. V. Scriven, “Applications of Dialkylaminopyridine (DMAP) Catalysts in Organic Synthesis,” Aldrichim. Acta 2003, 36, 21–27.

    CAS  Google Scholar 

  • A. R. Katritzky, S. A. Belyakov, “Benzotriazole-Based Intermediates: Reagents for Efficient Organic Synthesis,” Aldrichim. Acta, 1998, 31, 35–45.

    Google Scholar 

  • V. F. Pozdnev, “Activation of Carboxylic Acids by Pyrocarbonates. Scope and Limitations,” Org. Prep. Proced. Int, 1998, 30, 631–655.

    Article  CAS  Google Scholar 

  • H. A. Staab, “Syntheses Using Heterocyclic Amides (Azolides),” Angew. Chem. Int. Ed. EnGl, 1962, 1, 351–367.

    Article  Google Scholar 

  • H. A. Staab, H. Bauer, K. M. Schneider, “Azolides in Organic Synthesis and Biochemistry,” Wiley, New York, 1998.

    Book  Google Scholar 

  • F. Albericio, R. Chinchilla, D. J. Dodsworth, C. Najera, “New Trends in Peptide Coupling Reagents,” Org. Prep. Proced. Int, 2001, 33, 203–303.

    Article  CAS  Google Scholar 

6.4

  • U. Ragnarsson, L. Grehn, “Novel Gabriel Reagents,” Acc. Chem. Res, 1991, 24, 285.

    Article  CAS  Google Scholar 

  • C. Salomon, E. G. Mata, “Recent Developments in Chemical Deprotection of Ester Functional Groups,” Tetrahedron 1993, 49, 3691.

    Article  CAS  Google Scholar 

  • J. Mulzer, “Synthesis of Esters, Activated Esters and Lactones,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 6, 323, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • R. Sustmann, H. G. Korth, “Protecting Groups for Carboxylic Acids,” in Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952-, Carboxylic Acids and Carboxylic Acid Derivatives (J. Falbe, Ed.), Vol. E5, 496, Georg Thieme Verlag, Stuttgart, 1985.

    Google Scholar 

  • E. Haslam, “Recent Developments in Methods for the Esterification and Protection of the Carboxyl Group,” Tetrahedron 1980, 36, 2409.

    Article  CAS  Google Scholar 

  • J. Otera, “Transesterification,” Chem. Rev, 1993, 93, 1449–1470.

    Article  CAS  Google Scholar 

  • N. F. Albertson, “Synthesis of Peptides with Mixed Anhydrides,” Org. React, 1962, 12, 157–355.

    CAS  Google Scholar 

  • R. C. Sheppard, “Peptide Synthesis,” in Comprehensive Organic Chemistry (E. Haslam, Ed.), 1979, 5 (Biological Compounds), 321–366, Pergamon, Oxford, U.K.

    Google Scholar 

  • J. Jones, “The Chemical Synthesis of Peptides,” Clarendon Press, Oxford, U. K., 1991.

    Google Scholar 

  • J. Jones, “Amino Acid and Peptide Synthesis (Oxford Chemistry Primers. 7),” Oxford University Press, Oxford, U. K., 1992.

    Google Scholar 

  • G. A. Grant, “Synthetic Peptides: A User’s Guide,” Freeman, New York, 1992.

    Google Scholar 

  • K.-H. Altmann, M. Mutter, “Die chemische Synthese von Peptiden und Proteinen,“ Chem. unserer Zeit, 1993, 27, 274–286.

    Article  CAS  Google Scholar 

  • M. Bodanszky, “Peptide Chemistry. A Practical Textbook,” 2nd ed., Springer Verlag, Berlin, 1993.

    Google Scholar 

  • M. Bodanszky, “Principles of Peptide Synthesis,“ 2nd ed., Springer Verlag, Berlin, 1993.

    Google Scholar 

  • C. Basava, G. M. Anantharamaiah (Eds.), “Peptides: Design, Synthesis and Biological Activity,“ Birkhaeuser, Boston, 1994.

    Google Scholar 

  • M. Bodanszky, A. Bodanszky, “The Practice of Peptide Synthesis,” 2nd ed., Springer Verlag, Heidelberg, 1994.

    Google Scholar 

  • L. A. Carpino, M. Beyermann, H. Wenschuh, M. Bienert, “Peptide Synthesis via Amino Acid Halides,” Acc. Chem. Res, 1996, 29, 268–274.

    Article  CAS  Google Scholar 

  • G. Jung, A. G. Beck-Sickinger, “Multiple Peptide Synthesis Methods and their Applications,” Angew. Chem., Int. Ed. Engl, 1992, 31, 367.

    Article  Google Scholar 

  • P. Lloyd-Williams, F. Albericio, E. Giralt, “Convergent Solid-Phase Peptide Synthesis,” Tetrahedron 1993, 49, 11065–11133.

    Article  CAS  Google Scholar 

  • Y. Okada, “Synthesis of Peptides by Solution Methods,” Curr. Org. Chem, 2001, 5, 1–43.

    Article  CAS  Google Scholar 

  • S. Aimoto, “Contemporary Methods for Peptide and Protein Synthesis,” Curr. Org. Chem, 2001, 5, 45–87.

    Article  CAS  Google Scholar 

  • C. Najera, “From α-Amino Acids to Peptides: All You Need for the Journey,“ Synlett 2002, 1388–1403.

    Google Scholar 

  • W. C. Chan, P. D. White (Eds.), “FMOC Solid-Phase Peptide Synthesis: A Practical Approach,” Oxford University Press, Oxford, U. K., 2000.

    Google Scholar 

  • T. A. Ryan, “Phosgene and Related Compounds,” Elsevier Science, New York, 1996.

    Google Scholar 

  • L. Cotarca, P. Delogu, A. Nardelli, V. Sunjic, “Bis(trichloromethyl) Carbonate in Organic Synthesis,” Synthesis 1996, 553–576.

    Google Scholar 

  • C. Agami, F. Couty, “The Reactivity of the N-Boc Protecting Group: An Underrated Feature,” Tetrahedron 2002, 58, 2701–2724.

    Article  CAS  Google Scholar 

6.5

  • M. P. Sibi, “Chemistry of N-Methoxy-N-Methylamides. Applications in Synthesis,” Org. Prep. Proced. Int, 1993, 25, 15–40.

    Article  CAS  Google Scholar 

  • J. L. Romine, “Bis-Protected Hydroxylamines as Reagents in Organic Synthesis. A Review,” Org. Prep. Proced. Int, 1996, 28, 249–288.

    Article  CAS  Google Scholar 

  • G. Benz, K.-D. Gundermann, A. Ingendoh, L. Schwandt, “Preparation of Aldehydes by Reduction,” in Methoden Org. Chem. (Houben-Weyl) 4th ed., 1952-, Aldehydes (J. Falbe, Ed.), Vol. E3, 418, Georg Thieme Verlag, Stuttgart, 1983.

    Google Scholar 

  • E. Mosettig, “The Synthesis of Aldehydes from Carboxylic Acids,” Org. React, 1954, 8, 218–257.

    Google Scholar 

  • J. S. Cha, “Recent Developments in the Synthesis of Aldehydes by Reduction of Carboxylic Acids and their Derivatives with Metal Hydrides,” Org. Prep. Proced. Int, 1989, 21, 451–477.

    Article  CAS  Google Scholar 

  • R. A. W. Johnstone, “Reduction of Carboxylic Acids to Aldehydes by Metal Hydrides,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 8, 259, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • A. P. Davis, “Reduction of Carboxylic Acids to Aldehydes by Other Methods,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 8, 283, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • B. T. O’Neill, “Nucleophilic Addition to Carboxylic Acid Derivatives,” in Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Vol. 1, 397, Pergamon Press, Oxford, 1991.

    Google Scholar 

  • D. A. Shirley, “The Synthesis of Ketones from Acid Halides and Organometallic Compounds of Magnesium, Zinc, and Cadmium,” Org. React, 1954, 8, 28–58.

    Google Scholar 

  • M. J. Jorgenson, “Preparation of Ketones from the Reaction of Organolithium Reagents with Carboxylic Acids,” Org. React, 1970, 18, 1–98.

    CAS  Google Scholar 

  • R. K. Dieter, “Reaction of Acyl Chlorides with Organometallic Reagents: A Banquet Table of Metals for Ketone Synthesis,” Tetrahedron 1999, 55, 4177–4236.

    Article  CAS  Google Scholar 

  • W. E. Bachmann, W. S. Struve, “The Arndt-Eistert Reaction,” Org. React, 1942, 1, 38–62.

    Google Scholar 

Further Reading

  • M. Al-Talib, H. Tashtoush, “Recent Advances in the Use of Acylium Salts in Organic Synthesis,” Org. Prep. Proced. Int, 1990, 22, 1–36.

    Article  CAS  Google Scholar 

  • S. Patai, (Ed.), “The Chemistry of Ketenes, Allenes, and Related Compounds,” Wiley, New York, 1980.

    Google Scholar 

  • H. R. Seikaly, T. T. Tidwell, “Addition Reactions of Ketenes,” Tetrahedron 1986, 42, 2587.

    Article  CAS  Google Scholar 

  • P. W. Raynolds, “Ketene,” in Acetic Acid and Its Derivatives (V. H. Agreda, J. R. Zoeller, Eds.), 161, Marcel Dekker, New York, 1993.

    Google Scholar 

  • A.-A. G. Shaikh, S. Sivaram, “Organic Carbonates,” Chem. Rev, 1996, 96, 951–976.

    Article  CAS  Google Scholar 

  • Y. Ono, “Dimethyl Carbonate for Environmentally Benign Reactions,” Pure Appl. Chem, 1996, 68, 367–376.

    Article  CAS  Google Scholar 

  • P. Tundo, M. Selva, “The Chemistry of Dimethyl Carbonate,” Acc. Chem. Res, 2002, 35, 706–716.

    Article  CAS  Google Scholar 

  • V. F. Pozdnev, “Activation of Carboxylic Acids by Pyrocarbonates. Scope and Limitations. A Review,” Org. Prep. Proced. Int, 1998, 30, 631–655.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Nucleophilic Substitution Reactions at the Carboxyl Carbon. In: Harmata, M. (eds) Organic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03651-4_6

Download citation

Publish with us

Policies and ethics