Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5720))

Abstract

A new tool for shape decomposition is presented. It is a function defined on the shape domain and computed using a linear system of equations. It is demonstrated that the level curves of the new function provide a hierarchical partitioning of the shape domain into visual parts, without requiring any features to be estimated. The new tool is an unconventional distance transform where the minimum distance to the union of the shape boundary and an unknown critical curve is computed. This curve divides the shape domain into two parts, one corresponding to the coarse scale structure and the other one corresponding to the fine scale structure.

The connection of the new function to a variety of morphological concepts (Skeleton by Influence Zone, Aslan Skeleton, and Weighted Distance Transforms) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tari, S., Shah, J., Pien, H.: A computationally efficient shape analysis via level sets. In: MMBIA 1996: Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 1996), pp. 234–243 (1996)

    Google Scholar 

  2. Tari, S., Shah, J., Pien, H.: Extraction of shape skeletons from grayscale images. CVIU 66(2), 133–146 (1997)

    Google Scholar 

  3. Borgefors, G.: Distance transforms in digital images. Comput. Vision, Graphics and Image Processing 34, 344–371 (1986)

    Article  Google Scholar 

  4. Maragos, P., Butt, M.A.: Curve evolution, differential morphology and distance transforms as applied to multiscale and eikonal problems. Fundamentae Informatica 41, 91–129 (2000)

    MATH  Google Scholar 

  5. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Tortorelli, V.: On the approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tari, S., Shah, J.: Local symmetries of shapes in arbitrary dimension. In: ICCV, pp. 1123–1128 (1998)

    Google Scholar 

  8. Aslan, C., Tari, S.: An axis-based representation for recognition. In: ICCV, pp. 1339–1346 (2005)

    Google Scholar 

  9. Aslan, C.: Disconnected skeletons for shape recognition. Master’s thesis, Department of Computer Engineering, Middle East Technical University (May 2005)

    Google Scholar 

  10. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: Shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)

    Article  Google Scholar 

  11. Baseski, E., Erdem, A., Tari, S.: Dissimilarity between two skeletal trees in a context. Pattern Recogn. 42(3) (2009)

    Google Scholar 

  12. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)

    Article  MATH  Google Scholar 

  13. Lantejoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. of Microscopy 121, 39–49 (1981)

    Article  Google Scholar 

  14. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  15. Kropatsch, W., Ion, A., Haxhimusa, Y., Flanitzer, T.: The eccentricity transform (of a digital shape). In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 437–448. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  17. Tari, S., Burgeth, B., Tari, I.: How to use a positive definite operator for shape analysis (submitted)

    Google Scholar 

  18. Arcelli, C., Serino, L.: From discs to parts of visual form. Image Vision Comput. 15(1), 1–10 (1997)

    Article  Google Scholar 

  19. Pan, X., Chen, Q., Liu, Z.: 3d shape recursive decomposition by poisson equation. Pattern Recognition Letters 30(1), 11–17 (2009)

    Article  Google Scholar 

  20. Tari, S.: Extracting parts of 2d shapes using local and global interactions simultaneosuly. In: Chen, C. (ed.) Handbook of Pattern Recognition and Computer Vision. World Scientific, Singapore (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tari, S. (2009). Hierarchical Shape Decomposition via Level Sets. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03613-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03612-5

  • Online ISBN: 978-3-642-03613-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics