Skip to main content

Rapid solution of boundary integral equations by wavelet Galerkin schemes

  • Conference paper
  • First Online:

Abstract

The present paper aims at reviewing the research on the wavelet-based rapid solution of boundary integral equations. When discretizing boundary integral equations by appropriate wavelet bases the system matrices are quasi-sparse. Discarding the non-relevant matrix entries is called wavelet matrix compression. The compressed system matrix can be assembled within linear complexity if an exponentially convergent hp-quadrature algorithm is used. Therefore, in combination with wavelet preconditioning, one arrives at an algorithm that solves a given boundary integral equation within discretization error accuracy, offered by the underlying Galerkin method, at a computational expense that stays proportional to the number of unknowns. By numerical results we illustrate and quantify the theoretical findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barinka, W. Dahmen, and R. Schneider. Fast Computation of Adaptive Wavelet Expansions. Numer. Math., 105(4):549–589, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Bebendorf. Approximation of Boundary Element Matrices. Numer. Math., 86:565–589, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing, 70:1–24, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Beylkin, R. Coifman, and V. Rokhlin. The fast wavelet transform and numerical algorithms. Comm. Pure and Appl. Math., 44:141–183, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp., 55:1–22, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Canuto, A. Tabacco, and K. Urban. The wavelet element method, part I: Construction and analysis. Appl. Comput. Harm. Anal., 6:1–52, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Carnicer, W. Dahmen, and J. Peña. Local decompositions of refinable spaces. Appl. Comp. Harm. Anal., 3:127–153, 1996.

    Article  MATH  Google Scholar 

  8. C. Carstensen and D. Praetorius. Averaging Techniques for the Effective Numerical Solution of Symm’s Integral Equation of the First Kind. SIAM J. Sci. Comput., 27:1226–1260, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Carstensen and E.P. Stephan. Adaptive boundary element methods for some first kind integral equations. SIAM J. Numer. Anal., 33:2166–2183, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. Z. Chen, C.A. Micchelli, and Y. Xu. A construction of interpolating wavelets on invariant sets. Math. Comp., 68:1569–1587, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. Z. Chen, C.A. Micchelli, and Y. Xu. Fast collocation methods for second kind integral equations. SIAM J. Numer. Anal., 40:344–375, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Cohen. Numerical Analysis of Wavelet Methods. Studies in Mathematics and Its Applications 32, North-Holland Publishing Co., Amsterdam, 2003.

    MATH  Google Scholar 

  13. A. Cohen, W. Dahmen, and R. DeVore. Adaptive Wavelet Methods for Elliptic Operator Equations – Convergence Rates. Math. Comp., 70:27–75, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Cohen, W. Dahmen, and R. DeVore. Adaptive Wavelet Methods II – Beyond the Elliptic Case. Found. Comput. Math., 2:203–245, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal., 41:1785–1823, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Pure Appl. Math., 45:485–560, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Cohen and R. Masson. Wavelet adaptive method for second order elliptic problems – boundary conditions and domain decomposition. Numer. Math., 86:193–238, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Coifman, G. David, Y. Meyer, and S. Semmes. ω-Calderón-Zygmund operators. Harmonic analysis and partial differential equations (El Escorial, 1987), 132–145, Lecture Notes in Math., 1384, Springer, Berlin, 1989.

    Chapter  Google Scholar 

  19. R.R. Coifman and Y. Meyer. A simple proof of a theorem by G. David and J.-L. Journé on singular integral operators. Probability theory and harmonic analysis. (Cleveland, Ohio, 1983), 61–65, Monogr. Textbooks Pure Appl. Math., 98, Dekker, New York, 1986.

    Google Scholar 

  20. M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19:613–626, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica, 6:55–228, 1997.

    Article  MathSciNet  Google Scholar 

  22. W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for boundary integral equations – optimal complexity estimates. SIAM J. Numer. Anal., 43:2251–2271, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive Methods for Boundary Integral Equations – Complexity and Convergence Estimates. Math. Comput., 76:1243–1274, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  24. W. Dahmen, B. Kleemann, S. Prößdorf, and R. Schneider. A multiscale method for the double layer potential equation on a polyhedron. In H.P. Dikshit and C.A. Micchelli, editors, Advances in Computational Mathematics, pages 15–57, World Scientific Publ., Singapore, 1994.

    Google Scholar 

  25. W. Dahmen and A. Kunoth. Multilevel preconditioning. Numer. Math., 63:315–344, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  26. W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval – stability and moment conditions. Appl. Comp. Harm. Anal., 6:259–302, 1999.

    Article  MathSciNet  Google Scholar 

  27. W. Dahmen, S. Prößdorf, and R. Schneider. Multiscale methods for pseudodifferential equations. In L.L. Schumaker and G. Webb, editors, Wavelet Analysis and its Applications, volume 3, pages 191–235, 1993.

    Google Scholar 

  28. W. Dahmen, S. Prößdorf, and R. Schneider. Wavelet approximation methods for periodic pseudodifferential equations. Part II – Matrix compression and fast solution. Adv. Comput. Math., 1:259–335, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Dahmen, S. Prößdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations. Part I – Stability and convergence. Mathematische Zeitschrift, 215:583–620, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  30. W. Dahmen, S. Prößdorf, and R. Schneider. Multiscale methods for pseudo-differential equations on smooth closed manifolds. In C.K. Chui, L. Montefusco, and L. Puccio, editors, Proceedings of the International Conference on Wavelets: Theory, Algorithms, and Applications, pages 385–424, 1994.

    Google Scholar 

  31. W. Dahmen and R. Schneider. Composite wavelet bases for operator equations. Math. Comput., 68:1533–1567, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Dahmen and R. Schneider. Wavelets on manifolds I. Construction and domain decomposition. Math. Anal., 31:184–230, 1999.

    MATH  MathSciNet  Google Scholar 

  33. W. Dahmen, R. Schneider, and Y. Xu. Nonlinear functionals of wavelet expansions—adaptive reconstruction and fast evaluation. Numer. Math., 86:49–101, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Desimone, R.V. Kohn, S. Müller, and F. Otto. A reduced theory for thin-film micromagnetics. Comm. Pure Appl. Math., 55(11):1408–1460, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Desimone, R.V. Kohn, S. Müller, F. Otto, and R. Schäfer. Two-dimensional modelling of soft ferromagnetic films. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457A:2983–2991, 2001.

    Article  Google Scholar 

  36. M. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at the vertex. SIAM J. Numer. Anal., 19:1260–1262, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  37. K. Eppler and H. Harbrecht. Second Order Shape Optimization using Wavelet BEM. Optim. Methods Softw., 21:135–153, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  38. K. Eppler and H. Harbrecht. Wavelet based boundary element methods in exterior electromagnetic shaping. Engineering Analysis with Boundary Elements, 32:645–657, 2008.

    Article  Google Scholar 

  39. B. Faermann. Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations. Numer. Math., 79:43–76, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Gantumur, H. Harbrecht, and R. Stevenson. An Optimal Adaptive Wavelet Method for Elliptic Equations Without Coarsening of Iterands. Math. Comput., 76:615–629, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  41. G.N. Gatica, H. Harbrecht, and R. Schneider. Least squares methods for the coupling of FEM and BEM. SIAM J. Numer. Anal., 41(5):1974–1995, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  42. L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. J. Comput. Phys., 73:325–348, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Comput., 15:547–565, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart, 1994.

    MATH  Google Scholar 

  45. M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equations. Numer. Math., 83(2):279–312, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  46. W. Hackbusch. Integral equations. Theory and numerical treatment. International Series of Numerical Mathematics, volume 120, Birkhäuser Verlag, Basel, 1995.

    MATH  Google Scholar 

  47. W. Hackbusch. A sparse matrix arithmetic based on ℋ-matrices. Part I: Introduction to ℋ-matrices. Computing, 64:89–108, 1999.

    Article  MathSciNet  Google Scholar 

  48. W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54:463–491, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  49. H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three dimensions. PHD Thesis, Technische Universität Chemnitz, Germany, 2001.

    Google Scholar 

  50. H. Harbrecht. A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing, 82:11–30, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  51. H. Harbrecht and T. Hohage. Fast Methods for Three-Dimensional Inverse Obstacle Scattering. J. Integral Equations Appl., 19(3):237–260, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  52. H. Harbrecht and T. Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. NAM Preprint 2009-01, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, 2009. (to appear in Inverse Problems and Imaging).

    Google Scholar 

  53. H. Harbrecht, U. Kähler, and R. Schneider. Wavelet Galerkin BEM on unstructured meshes. Comput. Vis. Sci., 8:189–199, 2005.

    Article  MathSciNet  Google Scholar 

  54. H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Biorthogonal wavelet approximation for the coupling of FEM-BEM. Numer. Math., 92:325–356, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  55. H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Wavelet preconditioning for the coupling of FEM-BEM. Num. Lin. Alg. Appl., 10:197–222, 2003.

    Article  MATH  Google Scholar 

  56. H. Harbrecht and M. Randrianarivony. From Computer Aided Design to Wavelet BEM. Bericht 07-18, Berichtsreihe des Mathematischen Seminars, Christian-Albrechts-Universität zu Kiel, 2007. (to appear in Comput. Vis. Sci.).

    Google Scholar 

  57. H. Harbrecht and R. Schneider. Wavelet Galerkin Schemes for 2D-BEM. In J. Elschner, I. Gohberg and B. Silbermann, editors, Problems and methods in mathematical physics, Operator Theory: Advances and Applications, volume 121, pages 221–260, Birkhäuser Verlag, Basel, 2001.

    Google Scholar 

  58. H. Harbrecht and R. Schneider. Adaptive Wavelet Galerkin BEM. In Computational Fluid and Solid Mechanics 2003, vol. 2, edited by K.J. Bathe, Elsevier, 1982–1986 (2003).

    Google Scholar 

  59. H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr., 269–270:167–188, 2004.

    Article  MathSciNet  Google Scholar 

  60. H. Harbrecht and R. Schneider. Wavelet based fast solution of boundary integral equations. In Abstract and Applied Analysis (Proceedings of the International Conference in Hanoi, 2002), edited by N.M. Chuong et al., World Scientific Publishing Company, 139–162 (2004).

    Google Scholar 

  61. H. Harbrecht and R. Schneider. Wavelet Galerkin Schemes for Boundary Integral Equations – Implementation and Quadrature. SIAM J. Sci. Comput., 27(4):1347–1370, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  62. H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math., 109(3):167–188, 2008.

    Article  MathSciNet  Google Scholar 

  63. H. Harbrecht and R. Stevenson. Wavelets with patchwise cancellation properties. Math. Comp., 75:1871–1889, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  64. N. Hoang and R. Stevenson. Finite element wavelets on manifolds. IMA J. Numer. Math., 23:149–173, 2003.

    MATH  Google Scholar 

  65. J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  66. S. Jaffard. Wavelet methods for fast resolution of elliptic equations. SIAM J. Numer. Anal., 29:965–986, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  67. U. Kähler. ℋ2-wavelet Galerkin BEM and its application to the radiosity equation. PHD Thesis, Technische Universität Chemnitz, Germany, 2007.

    Google Scholar 

  68. S. Knapek and K. Foster. Integral operators on sparse grids. SIAM J. Numer. Anal., 39:1794–1809, 2001/02.

    Article  MathSciNet  Google Scholar 

  69. A. Kunoth and J. Sahner. Wavelets on Manifolds: An Optimized Construction. Math. Comp., 75:1319–1349, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  70. C. Lage and C. Schwab. A wavelet-Galerkin boundary element method on polyhedral surfaces in ℝ3. Numerical treatment of multi-scale problems (Kiel, 1997), 104–118, Notes Numer. Fluid Mech. vol. 70, Vieweg, Braunschweig, 1999.

    Google Scholar 

  71. M. Maischak, P. Mund, and E.P. Stephan. Adaptive multilevel BEM for acoustic scattering. Symposium on Advances in Computational Mechanics, Vol. 2, (Austin, TX, 1997). Comput. Methods Appl. Mech. Engrg., 150:351–367, 1997.

    Google Scholar 

  72. Y. Meyer. Ondelettes et Opérateurs 2: Opérateurs de Calderón-Zigmund. Hermann, Paris, 1990.

    Google Scholar 

  73. P. Mund, and E.P. Stephan. An adaptive two-level method for hypersingular integral equations in R 3. Proceedings of the 1999 International Conference on Computational Techniques and Applications (Canberra). ANZIAM J., 42:C1019–C1033, 2000.

    MathSciNet  Google Scholar 

  74. J.-C. Nedelec. Acoustic and Electromagnetic Equations — Integral Representations for Harmonic Problems. Springer Verlag, 2001.

    Google Scholar 

  75. A. Novruzi. Contribution en Optimisation des Formes et Applications. PHD Thesis, Nancy, France, 1997.

    Google Scholar 

  76. A. Novruzi and J.-R. Roche. Newton’s method in shape optimisation: a three-dimensional case. BIT, 40:102–120, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  77. P. Oswald. Multilevel finite element approximation. Theory and applications. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart, 1994.

    MATH  Google Scholar 

  78. P. Oswald. On function spaces related to Finite Element Approximation Theory. Z. Anal. Anwendungen, 9:43–64, 1990.

    MATH  MathSciNet  Google Scholar 

  79. T. von Petersdorff, R. Schneider. and C. Schwab Multiwavelets for second kind integral equations. SIAM J. Num. Anal., 34:2212–2227, 1997.

    Article  MATH  Google Scholar 

  80. T. von Petersdorff and C. Schwab. Wavelet approximation for first kind integral equations on polygons. Numer. Math., 74:479–519, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  81. T. von Petersdorff and C. Schwab. Fully discretized multiscale Galerkin BEM. In W. Dahmen, A. Kurdila, and P. Oswald, editors, Multiscale wavelet methods for PDEs, pages 287–346, Academic Press, San Diego, 1997.

    Chapter  Google Scholar 

  82. T. von Petersdorff and C. Schwab. Sparse finite element methods for operator equations with stochastic data. Appl. Math., 51:145–180, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  83. T. von Petersdorff and E.P. Stephan. Decompositions in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron. Math. Nachr., 149:71–104, 1990.

    MathSciNet  Google Scholar 

  84. T. von Petersdorff and E.P. Stephan. Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Meth. Appl. Sci., 12:229–249, 1990.

    Article  MATH  Google Scholar 

  85. M. Pierre and J.-R. Roche. Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech., B/Fluids, 10:489–500, 1991.

    MATH  MathSciNet  Google Scholar 

  86. A. Rathsfeld. A wavelet algorithm for the solution of a singular integral equation over a smooth two-dimensional manifold. J. Integral Equations Appl., 10:445–501, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  87. A. Rathsfeld and R. Schneider. On a quadrature algorithm for the piecewise linear wavelet collocation applied to boundary integral equations. Math. Methods Appl. Sci., 26:937–979, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  88. N. Reich. Wavelet Compression of Anisotropic Integrodifferential Operators on Sparse Tensor Product Spaces. PHD Thesis 17661, ETH Zurich, Switzerland, 2008.

    Google Scholar 

  89. N. Reich. Wavelet Compression of Integral Operators on Sparse Tensor Spaces: Construction, Consistency and Asymptotically Optimal Complexity. Report 2008-24, Seminar of Applied Mathematics, ETH Zurich, 2008.

    Google Scholar 

  90. N. Reich. Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces. Report 2008-26, Seminar of Applied Mathematics, ETH Zurich, 2008.

    Google Scholar 

  91. V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60:187–207, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  92. S. Sauter and C. Schwab. Quadrature for the hp-Galerkin BEM in ℝ3. Numer. Math., 78:211–258, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  93. S. Sauter and C. Schwab. Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen. B.G. Teubner, Stuttgart, 2005.

    Google Scholar 

  94. G. Schmidlin and C. Schwab. Wavelet Galerkin BEM on unstructured meshes by aggregation. Multiscale and multiresolution methods, pages 359–378, Lect. Notes Comput. Sci. Eng., 20, Springer, Berlin, 2002.

    Google Scholar 

  95. R. Schneider. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

  96. H. Schulz and O. Steinbach. A new a posteriori error estimator in adaptive direct boundary element methods. The Dirichlet problem. Calcolo, 37:79–96, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  97. C. Schwab. Variable order composite quadrature of singular and nearly singular integrals. Computing, 53:173–194, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  98. O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York, 2008.

    MATH  Google Scholar 

  99. R. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal., 35:1110–1132, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  100. R. Stevenson. Composite wavelet bases with extended stability and cancellation properties. SIAM J. Math. Anal., 45:133–162, 2007.

    MATH  MathSciNet  Google Scholar 

  101. W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal., 3:186–200, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  102. J. Tausch. A variable order wavelet method for the sparse representation of layer potentials in the non-standard form. J. Numer. Math., 12:233–254, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  103. J. Tausch and J. White. Multiscale bases for the sparse representation of boundary integral operators on complex geometries. SIAM J. Sci. Comput., 24:1610–1629, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  104. E.E. Tyrtyshnikov. Mosaic sceleton approximation. Calcolo, 33:47–57, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  105. L. Villemoes. Wavelet analysis of refinement equations. SIAM J. Math. Anal., 25:1433–1460, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  106. W.L. Wendland. On asymptotic error analysis and underlying mathematical principles for boundary element methods. In C.A. Brebbia, editor, Boundary Element Techniques in Computer Aided Engineering, NATO ASI Series E-84, pages 417–436, Martinus Nijhoff Publ., Dordrecht-Boston-Lancaster, 1984.

    Google Scholar 

  107. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev. 34:581–613, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harbrecht, H., Schneider, R. (2009). Rapid solution of boundary integral equations by wavelet Galerkin schemes. In: DeVore, R., Kunoth, A. (eds) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03413-8_8

Download citation

Publish with us

Policies and ethics