Skip to main content

MANETS: High Mobility Can Make Up for Low Transmission Power

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5556))

Abstract

We consider Mobile Ad-hoc NETworks (MANETs) formed by n nodes that move independently at random over a finite square region of the plane. Nodes exchange data if they are at distance at most r within each other, where r > 0 is the node transmission radius. The flooding time is the number of time steps required to broadcast a message from a source node to every node of the network. Flooding time is an important measure of the speed of information spreading in dynamic networks.

We derive a nearly-tight upper bound on the flooding time which is a decreasing function of the maximal velocity of the nodes.

It turns out that, when the node velocity is “sufficiently” high, even if the node transmission radius r is far below the connectivity threshold, the flooding time does not asymptotically depend on r. So, flooding can be very fast even though every snapshot (i.e. the static random geometric graph at any fixed time) of the MANET is fully disconnected.

Our result is the first analytical evidence of the fact that high, random node mobility strongly speed-up information spreading and, at the same time, let nodes save energy.

Partially supported by the EU under the EU/IST Project 15964 AEOLUS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs (2002), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

  2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal on Computing 29(1), 180–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing 2(5), 483–502 (2002)

    Article  Google Scholar 

  6. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.E., Rolim, J.D.P.: Fast and energy efficient sensor data collection by multiple mobile sinks. In: Proc. of MOBIWAC 2007, pp. 25–32 (2007)

    Google Scholar 

  7. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: Proc. of 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2008), pp. 213–222. ACM Press, New York (2008)

    Google Scholar 

  8. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary markovian evolving graphs. In: Proc. of the 23rd IEEE International Parallel and Distributed Processing Symposium. IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  9. Diaz, J., Mitsche, D., Perez-Gimenez, X.: On the connectivity of dynamic random geometric graphs. In: Proc. of 19th annual ACM-SIAM symposium on Discrete algorithms (SODA 2008), pp. 601–610 (2008)

    Google Scholar 

  10. Jain, S., et al.: Exploiting mobility for energy efficient data collection in wireless sensor networks. ACM/Kluwer Mobile Networks and Applications (MONET) 11(3) (2006)

    Google Scholar 

  11. Grossglauser, M., Tse, N.C.: Mobility increases the capacity of ad-hoc wireless networks. IEEE/ACM Trans. on Networking 10(4) (2002)

    Google Scholar 

  12. Guerin, R.A.: Channel occupancy time distribution in a cellular radio system. IEEE Trans. on Veichular Technology 36(3), 89–99 (1987)

    Article  Google Scholar 

  13. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks. In: Stochastic Analysis, Control, Optimization and Applications, pp. 547–566 (1998)

    Google Scholar 

  14. Kinalis, A., Nikoletseas, S.E.: Adaptive redundancy for data propagation exploiting dynamic sensory mobility. In: Proc. of ACM MSWIM 2008, pp. 149–156 (2008)

    Google Scholar 

  15. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theoretical Computer Science 243, 289–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) London Mathematical Society Lecture Note, vol. 141, pp. 148–188. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  17. Mei, A., Stefa, J.: Swim: a simple model to generate small mobile worlds. In: Proc. of IEEE INFOCOM 2009 (2009)

    Google Scholar 

  18. Pelusi, L., Passarella, A., Conti, M.: Beyond manets: Dissertation on opportunistic networking. IIT-CNR Tech. Rep. (2006)

    Google Scholar 

  19. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  20. Santi, P., Blough, D.M.: The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 25–39 (2003)

    Article  Google Scholar 

  21. Zhang, Z.: Routing in intermittently connected mobile ad-hoc networks and delay tolerant networks: overview and challenges. IEEE Communication Surveys 8(1) (2006)

    Google Scholar 

  22. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse mobile ad-hoc networks. In: Proc. of 5th ACM MobiHoc 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clementi, A.E.F., Pasquale, F., Silvestri, R. (2009). MANETS: High Mobility Can Make Up for Low Transmission Power. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02930-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02930-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02929-5

  • Online ISBN: 978-3-642-02930-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics