Skip to main content

Exact and Approximate Bandwidth

  • Conference paper
Automata, Languages and Programming (ICALP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Included in the following conference series:

Abstract

In this paper we gather several improvements in the field of exact and approximate exponential-time algorithms for the Bandwidth problem. For graphs with treewidth t we present a O(n O(t) 2n) exact algorithm. Moreover for the same class of graphs we introduce a subexponential constant-approximation scheme – for any α> 0 there exists a (1 + α)-approximation algorithm running in \(O(\exp(c(t + \sqrt{n/\alpha})\log n))\) time where c is a universal constant. These results seem interesting since Unger has proved that Bandwidth does not belong to APX even when the input graph is a tree (assuming P ≠ NP). So somewhat surprisingly, despite Unger’s result it turns out that not only a subexponential constant approximation is possible but also a subexponential approximation scheme exists. Furthermore, for any positive integer r, we present a (4r − 1)-approximation algorithm that solves Bandwidth for an arbitrary input graph in \(O^*(2^{n\over r})\) time and polynomial space. Finally we improve the currently best known exact algorithm for arbitrary graphs with a O(4.473n) time and space algorithm.

In the algorithms for the small treewidth we develop a technique based on the Fast Fourier Transform, parallel to the Fast Subset Convolution techniques introduced by Björklund et al. This technique can be also used as a simple method of finding a chromatic number of all subgraphs of a given graph in O *(2n) time and space, what matches the best known results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björklund, A., Husfeldt, T.: Inclusion–exclusion algorithms for counting set partitions. In: Proc. FOCS 2006, pp. 575–582 (2006)

    Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 67–74. ACM Press, New York (2007)

    Chapter  Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for problems of bounded width: Hardness for the W hierarchy (extended abstract). In: ACM Symposium on Theory of Computing, pp. 449–458 (1994)

    Google Scholar 

  4. Cygan, M., Pilipczuk, M.: Even faster exact bandwidth, arxiv:0902.1661v1 (unpublished, 2008), http://arxiv.org/abs/0902.1661v1

  5. Cygan, M., Pilipczuk, M.: Faster exact bandwidth. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U.: Coping with the NP-hardness of the graph bandwidth problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Fomin, F.: Private communication (2009)

    Google Scholar 

  10. Garey, M., Graham, R., Johnson, D., Knuth, D.: Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34, 477–495 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koivisto, M.: An O *(2n) algorithm for graph coloring and other partitioning problems via inclusion–exclusion. In: Proc. FOCS 2006, pp. 583–590 (2006)

    Google Scholar 

  12. Monien, B.: The bandwidth-minimization problem for caterpillars with hairlength 3 is np-complete. SIAM J. Algebraic Discrete Methods 7, 505–512 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escoffier, B., Bourgeois, N., Paschos, V.T.: Efficient approximation by “low-complexity” exponential algorithms. Cahier du LAMSADE 271, LAMSADE, Universite Paris-Dauphine (2007)

    Google Scholar 

  14. Saxe, J.: Dynamic programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM Journal on Algebraic Methods 1, 363–369 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Unger, W.: The complexity of the approximation of the bandwidth problem. In: Proc. FOCS 1998, pp. 82–91 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cygan, M., Pilipczuk, M. (2009). Exact and Approximate Bandwidth. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics