Skip to main content

A Two-Level Model of Anticipation-Based Motor Learning for Whole Body Motion

  • Conference paper
Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5499))

Included in the following conference series:

Abstract

We present a model of motor learning based on a combination of Operational Space Control and Optimal Control. Anticipatory processes are used both in the learning of the dynamics model of the system and in the coordination between both types of control. In order to illustrate the proposed model and associated control method, we apply these principles to the control of a simplified virtual humanoid performing a stand-up task starting from a crouching posture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, N.: The Co-ordination and Regulation of Movements. Pergamo, Oxford (1967)

    Google Scholar 

  2. Flash, T., Hogan, N.: The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience 5(7), 1688–1703 (1985)

    Google Scholar 

  3. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 61(2), 89–101 (1989)

    Article  Google Scholar 

  4. Kawato, M.: Optimization and learning in neural networks for formation and control of coordinated movement. In: Attention and performance XIV (silver jubilee volume): synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, pp. 821–849. MIT Press, Cambridge (1993)

    Google Scholar 

  5. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. Journal of Neurophysiology 81(5), 2140–2155 (1999)

    Google Scholar 

  6. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  Google Scholar 

  7. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391 (1954)

    Article  Google Scholar 

  8. Todorov, E., Jordan, M.: A minimal intervention principle for coordinated movement. In: NIPS, pp. 27–34 (2003)

    Google Scholar 

  9. Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research 126(3), 289–306 (1999)

    Article  Google Scholar 

  10. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature Neurosciences 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  11. Todorov, E.: Optimality principles in sensorimotor control. Nature Neurosciences 7(9), 907–915 (2004)

    Article  Google Scholar 

  12. Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: Redudancy and invariance. Journal of Neurophysiology 97(1), 331–347 (2007)

    Article  Google Scholar 

  13. Guigon, E., Baraduc, P., Desmurget, M.: Optimality, stochasticity and variability in motor behavior. Journal of Computational Neuroscience 24(1), 57–68 (2008)

    Article  Google Scholar 

  14. Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: Feedback and accuracy. European Journal of Neuroscience 27(4), 1003–1016 (2008)

    Article  Google Scholar 

  15. Miyamoto, H., Wolpert, D.M., Kawato, M.: Computing the optimal trajectory of arm movement: the TOPS (task optimization in the presence of signal-dependent noise) model. In: Biologically inspired robot behavior engineering, pp. 395–415. Physica-Verlag GmbH, Germany (2003)

    Chapter  Google Scholar 

  16. Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3, 1212–1217 (2000)

    Article  Google Scholar 

  17. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  18. Davidson, P.R., Wolpert, D.M.: Widespread access to predictive models in the motor system: a short review. Journal of Neural Engineering 2(3), S313–S319 (2005)

    Article  Google Scholar 

  19. Haruno, M., Wolpert, D.M., Kawato, M.: MOSAIC model for sensorimotor learning and control. Neural Computation 13(10), 2201–2220 (2001)

    Article  MATH  Google Scholar 

  20. Doya, K., Samejima, K., Katagiri, K., Kawato, M.: Multiple model-based reinforcement learning. Neural Computation 14(6), 1347–1369 (2002)

    Article  MATH  Google Scholar 

  21. Shadmehr, R., Wise, S.: The Computational Neurobiology of Reaching and Pointing. MIT Press, Cambridge (2005)

    Google Scholar 

  22. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation 3(1), 43–53 (1987)

    Article  Google Scholar 

  23. Sentis, L., Khatib, O.: Control of free-floating humanoid robots through task prioritization. In: IEEE Conference on Robotics and Automation (ICRA), pp. 1718–1723 (April 2005)

    Google Scholar 

  24. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation 13(3), 398–410 (1997)

    Article  Google Scholar 

  25. Barthlemy, S., Bidaud, P.: Stability measure of postural dynamic equilibrium based on residual radius. In: RoManSy 2008: 17th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (2008)

    Google Scholar 

  26. Vijayakumar, S., DSouza, A., Schaal, S.: LWPR: A scalable method for incremental online learning in high dimensions. Technical report. Press of University of Edinburgh, Edinburgh (2005)

    Google Scholar 

  27. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  28. Potts, D., Sammut, C.: Incremental learning of linear model trees. Machine Learning 61(1-3), 5–48 (2005)

    Article  MATH  Google Scholar 

  29. Sun, G., Scassellati, B.: A fast and efficient model of learning to reach. International Journal of Humanoid Robotics 2(4), 391–414 (2005)

    Article  Google Scholar 

  30. Vijayakumar, S., Schaal, S.: Local dimensionality reduction for locally weighted learning. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 220–225 (1997)

    Google Scholar 

  31. Tenenhaus, M.: La régression PLS: théorie et pratique. Editions Technip (1998)

    Google Scholar 

  32. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 298–303 (2001)

    Google Scholar 

  33. Wieber, P.B., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The HuMAnS toolbox, a homogeneous framework for motion capture, analysis and simulation. In: Proceedings of the ninth ISB Symposium on 3D analysis of human movement, Valenciennes, France. Academic, San Diego (2006)

    Google Scholar 

  34. Sastry, S., Bodson, M., Bartram, J.F.: Adaptive control: Stability, convergence, and robustness. The Journal of the Acoustical Society of America 88, 588 (1990)

    Article  Google Scholar 

  35. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, New York (2007)

    MATH  Google Scholar 

  36. Mitrovic, D., Klanke, S., Vijayakumar, S.: Adaptive optimal control for redundantly actuated arms. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 93–102. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the American Control Conference, pp. 300–306 (2005)

    Google Scholar 

  38. Nguyen-Tuong, D., Peters, J., Seeger, M., Scholkopf, B.: Learning inverse dynamics: a comparison. Technical report, Max Planck Institute for Biological Cybernetics, Spemannstrae 38, 72076 Tubingen - Germany (2008)

    Google Scholar 

  39. Butz, M.V., Herbort, O., Hoffman, J.: Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture. Psychological Review 114(4), 1015–1046 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salaün, C., Padois, V., Sigaud, O. (2009). A Two-Level Model of Anticipation-Based Motor Learning for Whole Body Motion. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2008. Lecture Notes in Computer Science(), vol 5499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02565-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02565-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02564-8

  • Online ISBN: 978-3-642-02565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics