Skip to main content

Nonnegative Mixed-Norm Preconditioning for Microscopy Image Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Abstract

Image segmentation in microscopy, especially in interference-based optical microscopy modalities, is notoriously challenging due to inherent optical artifacts. We propose a general algebraic framework for preconditioning microscopy images. It transforms an image that is unsuitable for direct analysis into an image that can be effortlessly segmented using global thresholding. We formulate preconditioning as the minimization of nonnegative-constrained convex objective functions with smoothness and sparseness-promoting regularization. We propose efficient numerical algorithms for optimizing the objective functions. The algorithms were extensively validated on simulated differential interference (DIC) microscopy images and challenging real DIC images of cell populations. With preconditioning, we achieved unprecedented segmentation accuracy of 97.9% for CNS stem cells, and 93.4% for human red blood cells in challenging images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sha, F., Lin, Y., Saul, L.K., Lee, D.D.: Multiplicative updates for nonnegative quadratic programming. Neural Computation 19, 2004–2031 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MATH  Google Scholar 

  4. Young, D., Glasbey, C., Gray, A., Martin, N.: Identification and sizing of cells in microscope images by template matching and edge detection. In: Proc. IEEE Image Proc. App., July 1995, pp. 266–270 (1995)

    Google Scholar 

  5. Heise, B., Sonnleitner, A., Klement, E.P.: DIC image reconstruction on large cell scans. Microsc. Res. Tech. 66, 312–320 (2005)

    Article  Google Scholar 

  6. Arnison, M.R., Cogswell, C.J., Smith, N.I., Fekete, P.W., Larkin, K.G.: Using the Hilbert transform for 3D visualization of differential interference contrast microscope images. J. Microsc. 199(1), 79–84 (2000)

    Article  Google Scholar 

  7. Preza, C., Snyder, D.L., Conchello, J.A.: Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy. J. Opt. Soc. Am. A 16(9), 2185–2199 (1999)

    Article  Google Scholar 

  8. Kagalwala, F., Kanade, T.: Reconstructing specimens using DIC microscope images. IEEE Trans. Syst., Man, Cybern. 33(5), 728–737 (2003)

    Article  Google Scholar 

  9. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004), http://www.stanford.edu/~boyd/cvxbook

  11. The MOSEK optimization software, Mosek ApS, Copenhagen, Denmark, http://www.mosek.com/

  12. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dey, N., Blanc-Féraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J.C., Zerubia, J.: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69, 260–266 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, K., Kanade, T. (2009). Nonnegative Mixed-Norm Preconditioning for Microscopy Image Segmentation. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics