Skip to main content

Abstract

Self-organizing neural networks are usually focused on prototype learning, while the topology is held fixed during the learning process. Here we propose a method to adapt the topology of the network so that it reflects the internal structure of the input distribution. This leads to a self-organizing graph, where each unit is a mixture component of a Mixture of Gaussians (MoG). The corresponding update equations are derived from the stochastic approximation framework. Experimental results are presented to show the self-organization ability of our proposal and its performance when used with multivariate datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukushima, K.: Self-organization of shift-invariant receptive fields. Neural Networks 12(6), 791–802 (1999)

    Article  Google Scholar 

  2. Kohonen, T.: The Self-Organizing Map. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  3. López-Rubio, E., Muñoz-Pérez, J., Gómez-Ruiz, J.A.: Self-Organizing Dynamic Graphs. Neural Processing Letters 16, 93–109 (2002)

    Article  MATH  Google Scholar 

  4. Yin, H.: ViSOM—a novel method for multivariate data projection and structure visualization. IEEE Trans. Neural Networks 13(1), 237–243 (2002)

    Article  Google Scholar 

  5. Huang, D., Yi, Z.: Shape recovery by a generalized topology preserving SOM. Neurocomputing 72(1-3), 573–580 (2008)

    Article  Google Scholar 

  6. Van Hulle, M.M.: Joint Entropy Maximization in Kernel-Based Topographic Maps. Neural Computation 14(8), 1887–1906 (2002)

    Article  MATH  Google Scholar 

  7. Verbeek, J.J., Vlassis, N., Krose, B.J.A.: Self-organizing mixture models. Neurocomputing 63, 99–123 (2005)

    Article  Google Scholar 

  8. Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12(6), 1299–1305 (2001)

    Article  Google Scholar 

  9. Sato, M., Ishii, S.: On-line EM Algorithm for the Normalized Gaussian Network. Neural Computation 12(2), 407–432 (2000)

    Article  Google Scholar 

  10. Kushner, H.J., Yin, G.G.: Stochastic approximation and Recursive Algorithms and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  11. Lakany, H.: Extracting a diagnostic gait signature. Pattern Recognition 41(5), 1644–1654 (2008)

    Article  MATH  Google Scholar 

  12. Wang, B., Fujinaka, T., Omatu, S., Abe, T.: Automatic inspection of transmission devices using acoustic data. IEEE Transactions on Automation Science and Engineering 5(2), 361–367 (2008)

    Article  Google Scholar 

  13. Wong, H.-S., Ma, B., Sha, Y., Ip, H.H.S.: 3D head model retrieval in kernel feature space using HSOM. Pattern Recognition 41(2), 468–483 (2008)

    Article  MATH  Google Scholar 

  14. Powers, S.T., He, J.: A hybrid artificial immune system and Self Organising Map for network intrusion detection. Information Sciences 178(15), 3024–3042 (2008)

    Article  Google Scholar 

  15. Alvarez-Guerra, M., González-Piñuela, C., Andrés, A., Galán, B., Viguri, J.R.: Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality. Environment International 34(6), 782–790 (2008)

    Article  Google Scholar 

  16. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, Department of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  17. Moschou, V., Ververidis, D., Kotropoulos, C.: Assessment of self-organizing map variants for clustering with application to redistribution of emotional speech patterns. Neurocomputing 71(1-3), 147–156 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M., Vargas-González, M.C. (2009). Probabilistic Self-Organizing Graphs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics