Skip to main content

Phytoremediation of Heavy Metal Contaminated Soils

  • Chapter
  • First Online:
Book cover Soil Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 19))

Abstract

Mining, industry, and agriculture have led to the accelerated release of metals into ecosystems, causing serious environmental problems and posing a threat to human and animal health. Excessive metal concentrations in contaminated soils can result in a deterioration of soil quality and the possible contamination of the food chain. Physical and chemical methods of remediation are not only highly expensive but they destroy the soil structure and microbial ecosystem. The development of low-cost remediation strategies is thus inevitable, and “phytoremediation,” especially “phytoextraction,” are considered to be economically viable and ecologically sustainable options for the remediation of heavy metal contaminated soils.

About 400+ taxa have been found to hyperaccumulate heavy metals from contaminated soil so far. In order to make phytoremediation more efficient, chemical amendments like chelating agents and organic acids are also used to enhance the availability of metals to plants used for phytoremediation. The use of arbuscular mycorrhizal fungi is another promising approach. The isolation of metal-accumulating genes in various hyperaccumulating plants and their incorporation into high-biomass crops through genetic engineering techniques hold promise for the phytoextraction of large amounts of metals from the soil. The main advantage of phytoremediation is that it is a green technology that does not have any adverse effects on ecosystem functioning but still allows the removal of pollutants from contaminated sites. In order to make phytoremediation more attractive, it has to be made less time consuming. The fastest phytoremediation approaches can only be developed when the soil scientist, agronomist, plant physiologist, and biotechnologist work hand-in-hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) Trace Elements in the Terrestrial Environment. Springer, New York

    Google Scholar 

  • Agely AA, Sylvia DM, Ma LQ (2005) Mycorrhizae Increase arsenic Uptake by the Hyperaccumulator Chinese Brake Fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Article  PubMed  CAS  Google Scholar 

  • Ali MB, Tripathi RD, Rai UN, Pal A, Singh SP (1999) Physico-chemical characteristics and pollution level of lake Nainital (U.P. India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere 39:2172–2182

    Article  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Blackie, Glasgow

    Google Scholar 

  • Ampiah-Bonney RJ, Tyson JF, Lanza GR (2007) Phytoextraction of arsenic from soil by Leersia oryzoides. Int J Phytorem 9:31–40

    Article  CAS  Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:553–554

    Article  CAS  Google Scholar 

  • Andrade Sara Adrián López de, Silveira Adriana Parada Dias da, Jorge Renato Atílio, Abreu Mónica Ferreira de (2008) Cadmium accumulation in sunflower plants Influenced by arbuscular mycorrhiza. Int J Phytorem 10:1-13

    Google Scholar 

  • Andrej P, Natasa N, Sasa O, Novica P, Borivoj K (2005) Cadmium phytoextraction potential of poplar clones (Populus spp.). Zeits Naturfo 60:247–251

    Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements–A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyper-accumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G, Vangrosveld J (eds) Phytoremediation of contaminated soil and water. Lewis Publisher, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177

    Google Scholar 

  • Banuelos GS, Meek DW (1990) Accumulation of selenium in plants grown in Se treated soil. J Environ Qual 19:772–777

    Article  CAS  Google Scholar 

  • Banuelos GS, Cardon G, Markey B, Ben Asher J, Wu L (1993) Plant and environment interactions–boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792

    Article  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Article  CAS  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of Selenium-contaminated sediment. Env Sci Tech 39:1771–1777

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. Wiley, New York

    Google Scholar 

  • Barber SA, Lee RB (1974) The effect of microorganisms on the absorption of manganese by plants. New Phytol 73:97–106

    Article  CAS  Google Scholar 

  • Baumann A (1885) Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch. Vers Statn 31:1–53

    Google Scholar 

  • Beath OA, Eppsom HF, Gilbert GS (1937) Selenium distribution in, and seasonal variation of vegetation type occurring on seleniferous soils. J Am Pharm Assoc 26:394–405

    CAS  Google Scholar 

  • Begonia GB, Davis CD, Begonia MFT, Gray CN (1998) Growth responses of Indian mustard [Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bull Environ Contam Toxicol 61:38–43

    Article  PubMed  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KE, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  PubMed  CAS  Google Scholar 

  • Bergkvist B, Folkeson L, Berggren D (1989) Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. Water Air Soil Poll 47:217–286

    Article  CAS  Google Scholar 

  • Berti WR, Cunningham SD (1993) Remediating soil Pb with green plants. International Conference of the Society for Environmental Geochemistry and Health, New Orleans, LA, pp 25–27

    Google Scholar 

  • Bini CR, Gabbrielli C, Gollelli L, Malew, Paolillo A (1999) Chromium accumulation in marigold. In Proc Extend Abst, 5th ICOBTE’99, Austria, pp. 172-173

    Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotech 18:213–217

    Article  CAS  Google Scholar 

  • Black H (1995) Absorbing possibilities: Phytoremediation. Environ Health Perspec 103:1106–1108

    CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gushsman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Tech 31:860–865

    Article  Google Scholar 

  • Blaylock MJ (2000) Field demonstrations of phytoremediation of lead-contaminated soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publ, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals – Using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica Juncea. Int J Phytorem 7:153–165

    Article  CAS  Google Scholar 

  • Boyd RS, Davis MA (2001) Metal tolerance and accumulation ability of the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae). Int J Phytorem 3:353–367

    Article  CAS  Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    Article  CAS  Google Scholar 

  • Brooks R, Anderson C, Stewart R, Robinson B (1999) Phytomining: growing a crop of a metal. Biologist (London) 46:201–205

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder compion for zinc-and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyper-accumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization. Environ Pollut 132:113–120

    Article  PubMed  CAS  Google Scholar 

  • Chandra P, Sinha S, Rai UN (1997) Bioremediation of chromium from water and soil by vascular aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contamination, vol 65. CRC Press, Boca Raton, FL, pp 274–282

    Chapter  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JF et al (eds) Land treatment of hazardous waste. Noyes Data Corp, Park Ridge, IL, pp 50–76

    Google Scholar 

  • Chaney RL (1988) Metal speciation and interactions among elements affect trace element transfer in agricultural and environmental food-chains. In: Kramer JR, Allen HE (eds) Metal speciation: theory, analysis and applications. Lewis Publishers, Chelsea, MI, pp 218–260

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 129–158

    Google Scholar 

  • Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction Potential of the Nickel Hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytorem 7:323–336

    Article  CAS  Google Scholar 

  • Chhonkar PK, Bhadraray S, Purakayastha TJ (2005) Phytoremediation of heavy metal contaminated soils. Monograph, Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi, p 34

    Google Scholar 

  • Chhonkar PK, Datta SP, Joshi SC, Pathak H (2000a) Impact of industrial effluents on soil health and agriculture I. Distillery and paper mill effluent. J Scientific Industrial Res 59:350–361

    CAS  Google Scholar 

  • Chhonkar PK, Datta SP, Joshi SC, Pathak H (2000b) Impact of industrial effluents on soil health and agriculture II. Tannery and textile industrial effluents. J Scientific Industrial Res 59:446–454

    CAS  Google Scholar 

  • Cooper ET, Sims JT, Cunnigham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soil. J Environ Qual 28:1709–1719

    Article  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszla PJ (1991) Mechanism of iron acquisition from siderophores by microorgan isms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Cunningham SC, Berti WR, Huang JW (1995) Remediation of contaminated soils and sludges by green plants. In: Hinchee E, Means JL, Burris D (eds) Bioremediation of inorganics. Columbus-Richland, Batelle Press, pp 33–54

    Google Scholar 

  • de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr-contaminated land. Int J Phytorem 9:167–179

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochain LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochain LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • Ernst WHO (1968) Der einfluss der Phosphatversorgung sowie die Wirkung von ionogem and chelatisiertem Zink auf die Zink–and Phosphataufnahme einiger Schwermetallpflanzen. Physiol Plant 21:323–333

    Article  CAS  Google Scholar 

  • Escarre J, Lefebre C, Gruber W, LeBlanc M, Lepart J, Riviere Y (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in mediteranean area: implications for phytoremediation. New Phytol Phytol 145:429–437

    Article  CAS  Google Scholar 

  • Evangelou MW, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Environ Pollut 132:113–20

    Article  CAS  Google Scholar 

  • Evangelou MWH, Mathias EBEL, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Evangelou MWH, Kutschinski-Klöss S, Ebel M, Schaeffe A (2007) Potential of Borago officinalis, Sinapis alba L. and Phacelia boratus for phytoextraction of Cd and Pb from soil. Water Air Soil Pollut 182:407–416

    Article  CAS  Google Scholar 

  • Felix H (1997) Vor-Ort-Reinigung schwermetallbelasteter Böden mit Hilfe von metallakkumulierenden Pflanzen (Hyperakkumulatoren). TerraTech 2:47–49

    Google Scholar 

  • Fleisher DH, Ting KC, Giacomelli GA (1997) Computer model for full scale phytoremediation systems using rhizofiltration processes. ASAE Annual International Meeting, Minneapolis, Minnesota, USA. 10-14 August, 1997. Paper American Society of Agricultural Engineers No. 973883

    Google Scholar 

  • Forstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers ER (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, p 133

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic Species in an arsenic hyperaccumulating Fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science Total Environ 284:27–35

    Article  CAS  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145:293–298

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Almela C, Velez D, Lopez-Moya JR, Haro AD, Serrano R, Montoro R, Navarro-Avino J (2008) Identification of as accumulation plant species growing on highly contaminated soils. Int J Phytorem 10:185–196

    Article  CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of Plant root for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environ Pollut 154:212–218

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Griga M, Bjelkova M, Tejklova E (2002) Potential of flax (Linum usitatissimum) for heavy metal extraction and industrial processing of contaminated biomass – a review. In Proceed 4th workshop of COST action 837, working group 2, Bordeaux, April 25–26th, 2002

    Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Int J Phytorem 144:93–100

    Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants from molecules to ecosystem. Springer, Berlin, pp 1–29

    Google Scholar 

  • Guo Y, Marschner H (1996) Genotypic differences in uptake and translocation of cadmium in bean and maize inbred lines. Z Pflanzenemaehr Bodenkd 159:55–60

    CAS  Google Scholar 

  • Gupta C, Gupta S (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Comm Soil Sci Plant Anal 29:1491–1522

    Article  CAS  Google Scholar 

  • Gyulaia G, Humphreysc M, Bittsa´nszkya A, Skotc K, Kissa J, Skotc L, Gullnerd G, Heywoodc S, Szabo Z, Radimszkye L, Roderickc H, Rennenbergf H, Abbertonc M, Tama´s Ko˝mı´vesd, Heszkya L (2005) AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (Populus canescens L.) for copper in vitro. Z Naturforsch 60:300-306

    Google Scholar 

  • Haan SD, Lubbers J (1983) Microelements in potatoes under normal conditions, and as affected by micro-elements in municipal waste compost, sewage sludge and degraded materials from harbours. Rapport Institute Voor Bodemvruchtbaarheld 83:22

    Google Scholar 

  • Hartman WJ Jr (1975) An evaluation of land treatment of municipal wastewater and physical siting of facility installations. Washington, DC; US Department of Army

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunnigham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley D, Fernando A, Duarte P, Oliveira JFS (1996) Bioremoval of Phytoremediation of uranium-contaminated soils. In Chartier et al. (Ed.) Role of organic heavy metals from soil by Miscanthus sinensis Gigantheu acids in triggering uranium hyperaccumulation in plants, Proc 9th Eur Bioenergy Conf. Sci Technol 32:2004–2008

    Google Scholar 

  • Hutton M (1982) Cadmium in the European Communities. Report No. 26, Monitoring and Assessment Research Center, University of London

    Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a nickel-accumulating plant from new Caledonia. Science 193:579–580

    Article  PubMed  CAS  Google Scholar 

  • Jeffries DS, Schneider WR (1981) Atmospheric deposition of heavy metals in Central Ontario. Water Air Soil Pollut 158:127–152

    Article  Google Scholar 

  • Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Kashem MA, Singh BR (1999) Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water Air Soil Pollut 115:347–361

    Article  CAS  Google Scholar 

  • Kertulis-Tartar G, Ma LQ, Tu C, Chirenje T (2006) Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study. Int J Phytorem 8:311–322

    Article  CAS  Google Scholar 

  • Kim IS, Kang KH, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243

    Article  PubMed  CAS  Google Scholar 

  • Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soils by selected plants. Plant Soil Environ 49:548–553

    CAS  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Kramer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyper-accumulator plant Alyssum lesbiacum. Nuclear Instr Meth Physics Res 130:346–350

    Article  Google Scholar 

  • Krishnasamy R, Malarkodi M, Chitdeshwari T (2004) Remediation of metal contaminated soils using indigenous hyperaccumulators. Third Int Conf Chem Biavail Terres Env, Adelaide, South Australia, Sep 15–18:193–194

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Mottott RI (1995) Phyto-extraction: the use of plants to remove heavy metal from soils. Environ Sci Tech 29:1232–1238

    Article  CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in Two Alyssum Species. J Environ Qual 33:2090–2102

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Expt Bot 52:2291–2300

    Article  Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11:175–180

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered zinc compartmentation in the root symplasm and stimulated Zn2+ absorption into the leaf as mechanisms involved in zinc hyper-accumulation in Thlaspi caerulescens. Plant Physiol. 118:875–883

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspigoesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal contaminated soils: natural hyper-accumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Mahmud R, Inoue N, Kasajima S, Shaheen R (2008) Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. Int J Phytorem 10:119–132

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kenelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation. Wiley, New Jersey, p 898

    Book  Google Scholar 

  • McGrath SP, Sidoli CMD, Baker AJM, Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackrs HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 673–676

    Chapter  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochioleucum grown in contaminated soils. Plant Soil 188:153–159

    Article  CAS  Google Scholar 

  • Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack FMG, Verloo MG (2005) Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytorem 7:129–142

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Michael K, Pavel T, Jirina S, Vladislav C, Vojtech E (2007) The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67:640–651

    Article  CAS  Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contento di nichel nelli ceneri di Alyssum bertlonii Desv. Atti della Societa Toscana di Science Naturali Mem Ser A 55:49–77

    CAS  Google Scholar 

  • Morrey DR, Balkwill K, Balkwill MJ (1989) Studies on serpentine flora: preliminary analyses of soils and vegetation associated with serpentinite rock formations in the south-eastern transvaal. South African J Bot 55:71–177

    Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53:535–539

    Article  CAS  Google Scholar 

  • Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145:96–103

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J Hazard Mater 162:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Navarre JL, Ronneanu C, Priest P (1980) Deposition of heavy elements on Belgian agricultural soils. Water Air Soil Pollut 14:207–213

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Erismann K, Schwitzguébel J (2005) In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Reports 26:429–437

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzgu JP (2007) Chemical mutagenesis – a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytorem 9:149–165

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of the air, water and soils with trace metals. Nature (London) 333:134–139

    Article  CAS  Google Scholar 

  • Nye PH, Tinker TB (1977) Solute movement in the soil-root system. University of California Press, Berkeley, CA

    Google Scholar 

  • Parker DR, Laura JF, Tracey WV, David NT, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Article  CAS  Google Scholar 

  • Paz-Alberto AM, Sigua GC, Bellrose GB, Prudente JA (2007) Phytoextraction of Lead-contaminanted soil using Vetivergrass (Vetiveria zizanioides L.), Cogongrass (Imperata cylindrica L.) and Caraboagrass (Paspalum conjugatum L.). Environl Sci Poll Res 14:505–509

    Article  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation with transgenic trees. Int J Phytorem 7:33–42

    Article  CAS  Google Scholar 

  • Purakayastha TJ (2008a) Improvement in soil fertility of Periurban Delhi through long-term sewage irrigation. Indian Farming 57:19–22

    Google Scholar 

  • Purakayastha TJ, Thulasi V, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008b) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytorem 10:63–74

    Article  CAS  Google Scholar 

  • Qiu R, Fang X, Tang Y, Du S, Zeng X, Brewer E (2006) Zinc hyperaccumulation and uptake by Potentilla Griffithii hook. Int J Phytorem 8:299–310

    Article  CAS  Google Scholar 

  • Rascio N (1977) Metal accumulation by some plants growing on zinc-mine deposits. Oikos 29:250–253

    Article  CAS  Google Scholar 

  • Rattan RK, Datta SP, Chandra S, Saharan N (2002) Heavy metals and environmental quality. Fertiliser News 47:21–40

    CAS  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water – A case study. Agric Ecosys Env 109:210–322

    Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica Juncea L.) expressing bacterial γ-Glutamylcysteine Synthetase or Glutathione Synthetase. Int J Phytorem 10:440–454

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Robinson B, Mills T, Petit D, Fung L, Green S, Clothier B (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry, toxicity, and nutrition. Academic Press, New York

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Rulford ID, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytorem 4:59–72

    Article  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyper-accumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    Article  PubMed  CAS  Google Scholar 

  • Salido L, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytorem 5:89–103

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chert I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Molecular Biol 49:643–668

    Article  CAS  Google Scholar 

  • Santos JAG, Gonzaga MIS, Ma LQ (2008) Srivastava Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Environ Pollut 154:306–311

    Article  PubMed  CAS  Google Scholar 

  • Schwartz C, Sirguey C, Peronny S, Reeves RD, Bourgaud F, Morel JL (2006) Testing of outstanding individuals of Thlaspi Caerulescens for cadmium phytoextraction. Int J Phytorem 8:339–357

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytorem 2:31–51

    Article  CAS  Google Scholar 

  • Shrift A (1969) Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20:475–494

    Article  CAS  Google Scholar 

  • Smith JAC, Harper FA, Leighton RS, Thompson IP, Vaughan DJ, Baker AJM (1999) Comparative analysis of metal uptake, transport and sequestration in hyper-accumulator plants. In: Wenzel WW, Adriano DC, Alloway B, Doner HE, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) Proceed 5th Int Conf Biogeochemistry of the trace elements. Vienna, Austria, pp 22–23

    Google Scholar 

  • Smits EP, Pilon M (2002) Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences 21:439–456

    Article  Google Scholar 

  • Srivastava M, Ma LQ, Cotruvo JA (2005) Uptake and distribution of selenium in different fern species. Int J Phytoremediation 7:33–42

    Article  PubMed  CAS  Google Scholar 

  • Stephen D, Ebbs SD, Kochian LV (1998) Phytoextraction of Zn by oats, barley and Indian mustard. Environ Sci Tech 32:802–806

    Article  Google Scholar 

  • Surat W, Kruatrachue M, Pokethitiyook P, Tanhan P, Samranwanich T (2008) Potential of Sonchus Arvensis for the Phytoremediation of Lead-Contaminated Soil. Int J Phytorem 10:325–342

    Article  CAS  Google Scholar 

  • Takács T, Radimszky L, Németh T (2005) The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals. Z Naturforsch 60:3357–361

    Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake (Pteris vittata L.) and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EA (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phytorem 6:111–118

    Article  CAS  Google Scholar 

  • Vassilev A, Zaprianova P (1999) Removal of Cd by winter barley (H. vulgare L.) grown in soils with Cd pollution. Bulg J Agri Sci 5:131–136

    Google Scholar 

  • Videa-Peralta, Jose Ramon (2002) Feasibility of using living alfalfa plants in the phytoextraction of cadmium(II), chromium(VI), copper(II), nickel(II), and zinc(II): Agar and soil studies, Ph.D. Thesis, The University of Texas, El Paso, AAT 3049704, p. 119

    Google Scholar 

  • Wang Q (2000) Phytoremediation – A unique approach to restoration of contaminated soil with heavy metals in China. In Luo Y M, McGrath S P, et al. (Eds.), Proceedings of SoilRem2000, Int Conf Soil Remediation, Oct 15–19, Hangzhou, China, pp. 197–202

    Google Scholar 

  • Wang HB, Ye ZH, Shu WS, Li WC, Wong MH, Lan CY (2006) Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys. Int J Phytorem 8:1–11

    Article  CAS  Google Scholar 

  • Wang Fa Yuan, Lin XG, Yin R (2007) Effect of Arbuscular Mycorrhizal fungal inoculation on heavy metal accumulation of Maize grown in a naturally contaminated soil. Int J Phytorem 9:345–353

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Tech 31:182–186

    Article  Google Scholar 

  • Wilde EW, Brigmon RL, Dunn DL, Heitkamp MA, Dagnan DC (2005) Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere 61:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zu Y, Wu M (2001) Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla. Plant Sci 160:551–562

    Article  PubMed  CAS  Google Scholar 

  • Wu LH, Li H, Luo YM, Christie P (2004) Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ Geochem Health 26:331–335

    Article  PubMed  CAS  Google Scholar 

  • Wu LH, Sun XF, Luo YM, Xing XR, Christie P (2007) Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia Splendens from metal-contaminated soil. Int J Phytorem 9:227–241

    Article  CAS  Google Scholar 

  • Xiao YE, Hong-Yun P, Li-Ying J, Zhen-Li H (2005) Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by edta, citric acid, and compost. Int J Phytorem 7:69–83

    Article  CAS  Google Scholar 

  • Yadav S, Shukla OP, Rai UN (2005) Chromium pollution and bioremediation. Enviro News Newslett Int Soc Env Bot II:1

    Google Scholar 

  • Yankov B, Delibaltova V, Bojinov M (2000) Content of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars grown in industrially polluted regions. Plant Science (Bg) 37:525–531

    CAS  Google Scholar 

  • Yu XZ, Gu JD (2008) The role of EDTA in phytoextraction of hexavalent chromium by two willow trees. Ecotoxicol. 17:143–152

    Article  CAS  Google Scholar 

  • Zhu D, Schwab AP, Banki MK (1999) Heavy metal leaching from mine tailings as affected by plants. J Environ Qual 28:1727–1732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Purakayastha .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Purakayastha, T.J., Chhonkar, P.K. (2010). Phytoremediation of Heavy Metal Contaminated Soils. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_18

Download citation

Publish with us

Policies and ethics