Skip to main content

Bone Densitometry: Science and Practice

  • Chapter
  • First Online:
Radionuclide and Hybrid Bone Imaging

Abstract

Dual-energy X-ray absorptiometry (DXA) scans to measure bone mineral density (BMD) at the spine and hip have an important role in the evaluation of individuals at risk of sustaining an osteoporosis-related fracture and in helping clinicians advise patients about the appropriate use of anti-fracture treatment. Compared with alternative bone densitometry techniques, hip and spine DXA examinations have a number of advantages that include a consensus that BMD results should be interpreted using the World Health Organization (WHO) T-score definition of osteoporosis, a proven ability to predict fracture risk, proven effectiveness at targeting anti-fracture therapies, and the ability to monitor response to treatment. This review discusses the evidence for these and other clinical aspects of DXA scanning. Particular attention is paid to the new WHO FRAX® algorithm, which uses clinical risk factors in combination with a hip DXA scan to predict a patient’s 10-year risk of experiencing an osteoporotic fracture. We review the recently published clinical guidelines that incorporate the FRAX fracture risk assessment tool in decisions about patient treatment and discuss the reasons why a quantitative evaluation of fracture risk should become the standard approach to the clinical interpretation of DXA examinations in postmenopausal women and older men.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JE, Ahmed SF, Alsop C et al (2004) A practical guide to bone densitometry in children. National Osteoporosis Society, Bath

    Google Scholar 

  • Barr RJ, Adebajo A, Fraser WD et al (2005) Can peripheral DXA measurements be used to predict fractures in elderly women living in the community? Osteoporos Int 16:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Bell KJL, Hayen A, Macaskill P et al (2009) Value of routine monitoring of bone mineral density after starting bisphosphonate treatment: secondary analysis of trial data. BMJ 338:b2266

    Article  PubMed  Google Scholar 

  • Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of the effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Palermo L, Bauer D (2000) How well does bone mass predict long-term risk of hip fracture? Osteoporos Int 11(Suppl 2):S59

    Google Scholar 

  • Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Fogelman I (1997) Technical principles of dual-energy x-ray absorptiometry. Semin Nucl Med 27:210–228

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Fogelman I (2001) Peripheral or central densitometry: does it matter which technique we use? J Clin Densitom 4:83–96

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Fogelman I (2002) Clinical use of instruments that measure peripheral bone mass. Curr Opin Endocrinol Diabetes 9:502–511

    Article  Google Scholar 

  • Blake GM, Fogelman I (2008) How important are BMD accuracy errors for the clinical interpretation of DXA scans? J Bone Miner Res 23:457–462

    Article  PubMed  Google Scholar 

  • Blake GM, Herd RJM, Fogelman I (1996) A longitudinal study of supine lateral DXA of the lumbar spine: a comparison with posteroanterior spine, hip and total body DXA. Osteoporos Int 6:462–470

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Patel R, Knapp KM, Fogelman I (2003) Does the combination of two BMD measurements improve fracture discrimination? J Bone Miner Res 18:1955–1963

    Article  PubMed  Google Scholar 

  • Blake GM, Chinn DJ, Steel SA et al (2005) A list of device specific thresholds for the clinical interpretation of peripheral x-ray absorptiometry examinations. Osteoporos Int 16:2149–2156

    Article  PubMed  CAS  Google Scholar 

  • Bonnick SL, Johnston CC Jr, Kleerekoper M et al (2001) Importance of precision in bone density measurements. J Clin Densitom 4:105–110

    Article  PubMed  CAS  Google Scholar 

  • Borgstrom F, Jonsson B, Strom O, Kanis JA (2006a) An economic evaluation of strontium ranelate in the treatment of osteoporosis in a Swedish setting based on the results of the SOTI and TROPOS trials. Osteoporos Int 17:1781–1793

    Article  PubMed  CAS  Google Scholar 

  • Borgstrom F, Carisson A, Sintonen H et al (2006b) Cost-effectiveness of risedronate in the treatment of osteoporosis: an international perspective. Osteoporos Int 17:996–1007

    Article  PubMed  CAS  Google Scholar 

  • Borgstrom F, Johnell O, Kanis JA et al (2006c) At what hip fracture risk is it cost effective to treat? International intervention thresholds for the treatment of osteoporosis. Osteoporos Int 17:1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Centre JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fractures in men and women: an observational study. Lancet 353:878–882

    Article  Google Scholar 

  • Chesnut CH, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249

    Article  CAS  Google Scholar 

  • Compston J (2009) Monitoring bone mineral density during antiresorptive treatment for osteoporosis. BMJ 338:b1276

    Article  PubMed  Google Scholar 

  • Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon M, Melton LJ (1993) Population based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    PubMed  CAS  Google Scholar 

  • Cummings SR, Bauer DC (2010) Filtering FRAX – Don’t filter FRAX. Osteoporos Int 21:537–541

    Article  PubMed  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  • Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA 280:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  PubMed  CAS  Google Scholar 

  • De Laet C, Oden A, Johansson H, Johnell O, Jonsson B, Kanis JA (2005a) The impact of the use of multiple risk factors for fracture on case-finding strategies: a mathematical approach. Osteoporos Int 16:313–318

    Article  PubMed  Google Scholar 

  • De Laet C, Kanis JA, Oden A et al (2005b) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  • Dolan P, Torgerson DJ (1998) The cost of treating osteoporotic fractures in the United Kingdom female population. Osteoporos Int 8:611–617

    Article  PubMed  CAS  Google Scholar 

  • Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338:736–746

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Isberg B, Lindgren U (1988) Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography. Acta Radiol 29:89–94

    PubMed  CAS  Google Scholar 

  • Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomised clinical trial. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG (1998) Bone densitometry: choosing the proper site to measure. J Clin Densitom 1:279–285

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between lunar and hologic DXA systems. Osteoporos Int 6:432–436

    Article  PubMed  CAS  Google Scholar 

  • Faulkner KG, Von Stetton E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    Article  PubMed  CAS  Google Scholar 

  • Fink HA, Harrison SL, Taylor BC et al (2008) Differences in site-specific fracture risk among older women with discordant results for osteoporosis at hip and spine: study of osteoporotic fractures. J Clin Densitom 11:250–259

    Article  PubMed  Google Scholar 

  • Fogelman I, Blake GM (2000) Different approaches to bone densitometry. J Nucl Med 41:2015–2025

    PubMed  CAS  Google Scholar 

  • FRAX (2008) FRAX-WHO fracture risk assessment tool. http://www.shef.ac.uk/FRAX. Accessed 27 Apr 2010

  • Genant HK, Engelke K, Fuerst T et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    Article  PubMed  CAS  Google Scholar 

  • Gluer C-C (1999) Monitoring skeletal change by radiological techniques. J Bone Miner Res 14:1952–1962

    Article  PubMed  CAS  Google Scholar 

  • Gluer C-C, Blake G, Lu Y et al (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  PubMed  CAS  Google Scholar 

  • Gotfredsen A, Podenphant J, Norgaard H et al (1988) Accuracy of lumbar spine bone mineral content by dual photon absorptiometry. J Nucl Med 29:248–254

    PubMed  CAS  Google Scholar 

  • Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  • Guglielmi G, Lang TF (2002) Quantitative computed tomography. Semin Musculoskelet Radiol 6:219–227

    Article  PubMed  Google Scholar 

  • Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12:1316–1317

    Article  PubMed  CAS  Google Scholar 

  • Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and non-vertebral fractures in women with postmenopausal osteoporosis. JAMA 282:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Ho CP, Kim RW, Schaffler MB, Sartoris DJ (1990) Accuracy of dual-energy radiographic of the lumbar spine: a cadaver study. Radiology 176:171–173

    PubMed  CAS  Google Scholar 

  • Holland WW, Whitehead TP (1974) Value of new laboratory tests in diagnosis and treatment. Lancet 304:391–394

    Article  Google Scholar 

  • ISCD (2007) Official positions of the international society for clinical densitometry: updated 2007. http://www.iscd.org/visitors/positions/official.cfm. Accessed 27 Apr 2010

  • Johansson H, Oden A, Johnell O et al (2004) Optimisation of BMD measurements to identify high risk groups for treatment – a test analysis. J Bone Miner Res 19:906–913

    Article  PubMed  Google Scholar 

  • Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  • Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:929–936

    Article  Google Scholar 

  • Kanis JA, Gluer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 11:192–202

    Article  Google Scholar 

  • Kanis JA, Johnell O, Oden A et al (2001a) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Oden A, Johnell O et al (2001b) The burden of osteoporotic fractures: a method of setting intervention thresholds. Osteoporos Int 12:417–427

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Black D, Cooper C et al (2002) A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 13:527–536

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johansson H, Oden A et al (2004a) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johansson H, Oden A et al (2004b) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O, De Laet C et al (2004c) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Borgstrom F, De Laet C et al (2005a) Assessment of fracture risk. Osteoporos Int 16:581–589

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O, Oden A et al (2005b) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johansson H, Johnell O et al (2005c) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742

    Article  PubMed  Google Scholar 

  • Kanis JA, Borgstrom F, Johnell O et al (2005d) Cost-effectiveness of raloxifene in the UK: an economic evaluation based on the MORE study. Osteoporos Int 16:15–25

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Borgstrom F, Zethraeus N et al (2005e) Intervention thresholds for osteoporosis in the UK. Bone 36:22–32

    Article  PubMed  Google Scholar 

  • Kanis JA, Johnell O, Oden A et al (2006) The use of multiple sites for the diagnosis of osteoporosis. Osteoporos Int 17:527–534

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, Johnell O, Oden A et al (2008a) FRAX and the assessment of facture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H et al (2008b) Case finding for the management of osteoporosis with FRAX – assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H et al (2008c) A reference standard for the description of osteoporosis. Bone 42:467–475

    Article  PubMed  CAS  Google Scholar 

  • Kaptoge S, da Silva JA, Brixen K et al (2008) Geographical variation in DXA bone mineral density in young European men and women. Results from the network in Europe on male osteoporosis (NEMO) study. Bone 43:332–339

    Article  PubMed  Google Scholar 

  • Kuiper JW, van Kuijk C, Grashusi JL et al (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy x-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int 6:25–30

    Article  PubMed  CAS  Google Scholar 

  • Lang TF, Guglielmi G, Van Kuijk C et al (2002) Measurement of vertebral bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy X-ray absorptiometry in elderly women with and without vertebral fractures. Bone 30:247–250

    Article  PubMed  CAS  Google Scholar 

  • Lee DC, Wren TAL, Gilanz V (2007) Correcting DXA pediatric bone mineral density measurements to account for fat inhomogeneity. J Bone Miner Res 22(Suppl 1):S494–S495

    Google Scholar 

  • Lehmann LA, Alvaez RE, Macovski A et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667

    Article  PubMed  CAS  Google Scholar 

  • Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Genant HK, Shepherd J et al (2001) Classification of osteoporosis based on bone mineral densities. J Bone Miner Res 16:901–910

    Article  PubMed  CAS  Google Scholar 

  • Lunt M, Felsenberg D, Adams J et al (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporos Int 7:175–189

    Article  PubMed  CAS  Google Scholar 

  • Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312: 1254–1259

    Article  PubMed  CAS  Google Scholar 

  • McCloskey EV, Johansson H, Oden A et al (2009) Ten-year fracture probability identifies women who will benefit from clodronate therapy–additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int 20:811–817

    Article  PubMed  CAS  Google Scholar 

  • McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate treatment on hip fracture risk in elderly women. N Engl J Med 344:333–340

    Article  PubMed  CAS  Google Scholar 

  • Melton LJ, Gabriel SE, Crowson CS et al (2003) Cost-equivalence of different osteoporotic fractures. Osteoporos Int 14:383–388

    Article  PubMed  Google Scholar 

  • Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of recombinant human parathyroid hormone (1–34) fragment on spine and non-spine fractures and bone mineral density in postmenopausal osteoporosis. N Engl J Med 344:1434–1441

    Article  PubMed  CAS  Google Scholar 

  • NOF (2008a) National osteoporosis foundation fast facts on osteoporosis. http://www.nof.org/professionals/Clinicians_Guide.htm. Accessed 27 Apr 2010

  • NOF (2008b) National osteoporosis foundation clinician’s guide to prevention and treatment of osteoporosis. http://www.nof.org/professionals/index.htm. Accessed 27 Apr 2010

  • NOGG (2008) National Osteoporosis Guideline Group. http://www.shef.ac.uk/NOGG/index.html. Accessed 27 Apr 2010

  • Noon E, Singh S, Cuzick J et al (2010) Significant differences in UK and US female bone density reference ranges. Osteoporos Int 21(11):1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Patel R, Blake GM, Rymer J, Fogelman I (2000) Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 11:68–75

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: TROPOS study. J Clin Endocrinol Metab 90:2816–2822

    Article  PubMed  CAS  Google Scholar 

  • Sabin MA, Blake GM, MacLaughlin-Black SM, Fogelman I (1995) The accuracy of volumetric bone density measurements in dual X-ray absorptiometry. Calcif Tissue Int 56:210–214

    Article  PubMed  CAS  Google Scholar 

  • Seeman E, Vellas B, Benhamou C et al (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JA, Fan B, Lu Y et al (2006) Comparison of BMD precision for prodigy and Delphi spine and femur scans. Osteoporos Int 17:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Stewart A, Reid DM (2002) Quantitative ultrasound in osteoporosis. Semin Musculoskelet Radiol 6:229–232

    Article  PubMed  Google Scholar 

  • Stone KL, Seeley DG, Lui L-Y et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  • Storm T, Thamsborg G, Steiniche T et al (1990) Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 322:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Svendsen OL, Hassager C, Skodt V, Christiansen C (1995) Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip and forearm: a human cadaver study. J Bone Miner Res 10:868–873

    Article  PubMed  CAS  Google Scholar 

  • Tothill P, Pye DW (1992) Errors due to non-uniform distribution of fat in dual x-ray absorptiometry of the lumbar spine. Br J Radiol 65:807–813

    Article  PubMed  CAS  Google Scholar 

  • Tothill P, Pye DW, Teper J (1989) The influence of extra-skeletal fat on the accuracy of dual photon absorptiometry of the spine. In: Ring EFJ, Evans WD, Dixon AS (eds) Osteoporosis and bone mineral measurement. ISPM, York, pp 48–53

    Google Scholar 

  • Wahner HW, Dunn WL, Mazess RB et al (1985) Dual photon Gd-153 absorptiometry of bone. Radiology 156:203–206

    PubMed  CAS  Google Scholar 

  • Ward KA, Ashby RL, Roberts SA et al (2007) UK reference data for the hologic QDR discovery dual-energy x-ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child 92:53–59

    Article  PubMed  Google Scholar 

  • Webber CE (1987) The effect of fat on bone mineral measurements in normal subjects with recommended values of bone, muscle and fat attenuation coefficients. Clin Phys Physiol Meas 8:143–157

    Article  PubMed  CAS  Google Scholar 

  • WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: technical report series 843. WHO, Geneva

    Google Scholar 

  • Zethraeus N, Borgstrom F, Strom O, Kanis JA (2007) Cost-effectiveness of the treatment and prevention of osteoporosis – a review of the literature and a reference model. Osteoporos Int 18:9–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen M. Blake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blake, G.M., Fogelman, I. (2012). Bone Densitometry: Science and Practice. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds) Radionuclide and Hybrid Bone Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02400-9_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02399-6

  • Online ISBN: 978-3-642-02400-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics