Skip to main content

Pathophysiology of Bone Metastases

  • Chapter
  • First Online:
Radionuclide and Hybrid Bone Imaging

Abstract

Bone metastases are a common occurrence in carcinoma of the breast, prostate and lung. An understanding of the basic biology of metastatic disease is important for an appreciation of the selective nature of these tumour metastases for bone. Biomechanics of metastatic disease helps explain the proclivity of most metastatic disease for the vertebral column. An understanding of pathophysiology and biochemistry helps in understanding how some tumours produce osteolytic versus osteoblastic or mixed lesions and the relative risks of these deposits. This knowledge leads to an understanding of the difficulties in imaging these lesions and how best to utilize techniques such as SPECT/CT, MRI and PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algra PR, Bloem JL, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11(2):219–232

    PubMed  CAS  Google Scholar 

  • Allgayer H, Aguirre-Ghiso JA (2008) The urokinase receptor (u-PAR) – a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS 116(7–8):602–614

    PubMed  CAS  Google Scholar 

  • Altehoefer C, Ghanem N, Hogerle S et al (2001) Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol 40(1):16–23

    PubMed  CAS  Google Scholar 

  • Bachmeier BE, Nerlich AG, Lichtinghagen R et al (2001) Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. Anticancer Res 21(6A):3821–3828

    PubMed  CAS  Google Scholar 

  • Balliu E, Vilanova JC, Pelaez I et al (2009) Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 69(3):560–566

    PubMed  CAS  Google Scholar 

  • Barthel SR, Gavino JD, Descheny L et al (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11(11):1473–1491

    PubMed  CAS  Google Scholar 

  • Batson OV (1940) The function of the vertebral veins and their role in the spread of metastasis. Ann Surg 112(1):138–149

    PubMed  CAS  Google Scholar 

  • Beheshti M, Langsteger W, Fogelman I (2009) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):396–407

    PubMed  Google Scholar 

  • Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39(6):408–415

    PubMed  Google Scholar 

  • Blain SW, Scher HI, Cordon-Cardo C et al (2003) p27 as a target for cancer therapeutics. Cancer Cell 3(2):111–115

    PubMed  CAS  Google Scholar 

  • Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583

    PubMed  CAS  Google Scholar 

  • Bury T, Barreto A, Daenen F et al (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25(9):1244–1247

    PubMed  CAS  Google Scholar 

  • Carlin BI, Andriole GL (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88(12 Suppl):2989–2994

    PubMed  CAS  Google Scholar 

  • Cheville JC, Tindall D, Boelter C et al (2002) Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 95(5):1028–1036

    PubMed  Google Scholar 

  • Ciray I, Astrom G, Andreasson I et al (2000) Evaluation of new sclerotic bone metastases in breast cancer patients during treatment. Acta Radiol 41(2):178–182

    PubMed  CAS  Google Scholar 

  • Clamp A, Danson S, Nguyen H et al (2004) Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol 5(10):607–616

    PubMed  Google Scholar 

  • Clines GA, Guise TA (2004) Mechanisms and treatment for bone metastases. Clin Adv Hematol Oncol 2(5):295–302

    PubMed  Google Scholar 

  • Clines GA, Guise TA (2008) Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med 10:e7

    PubMed  Google Scholar 

  • Clines GA, Mohammad KS, Bao Y et al (2007) Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 21(2):486–498

    PubMed  CAS  Google Scholar 

  • Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55(1):61–66

    PubMed  CAS  Google Scholar 

  • Coleman RE, Rubens RD, Fogelman I (1988) Reappraisal of the baseline bone scan in breast cancer. J Nucl Med 29(6):1045–1049

    PubMed  CAS  Google Scholar 

  • Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10):3375–3379

    PubMed  CAS  Google Scholar 

  • Costelloe CM, Rohren EM, Madewell JE et al (2009) Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol 10(6):606–614

    PubMed  Google Scholar 

  • Cramer SD, Chen Z, Peehl DM (1996) Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol 156(2 Pt 1):526–531

    PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    PubMed  CAS  Google Scholar 

  • el-Khoury GY, Dalinka MK, Alazraki N et al (2000) Metastatic bone disease. American College of Radiology. ACR Appropriateness Criteria. Radiology 215(Suppl):283–293

    PubMed  Google Scholar 

  • Engelhard K, Hollenbach HP, Wohlfart K et al (2004) Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol 14(1):99–105

    PubMed  CAS  Google Scholar 

  • Epstein JI, Allsbrook WC Jr, Amin MB et al (2006) Update on the Gleason grading system for prostate cancer: results of an international consensus conference of urologic pathologists. Adv Anat Pathol 13(1):57–59

    PubMed  Google Scholar 

  • Ernst DS, Hanson J, Venner PM (1991) Analysis of prognostic factors in men with metastatic prostate cancer. Uro-Oncology Group of Northern Alberta. J Urol 146(2):372–376

    PubMed  CAS  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45(2):272–278

    PubMed  Google Scholar 

  • Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  • Even-Sapir E, Mishani E, Flusser G et al (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37(6):462–469

    PubMed  Google Scholar 

  • Felding-Habermann B, O’Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 98(4):1853–1858

    PubMed  CAS  Google Scholar 

  • Fielder PJ, Rosenfeld RG, Graves HC et al (1994) Biochemical analysis of prostate specific antigen-proteolyzed insulin-like growth factor binding protein-3. Growth Regul 4(4):164–172

    PubMed  CAS  Google Scholar 

  • Fogelman I, Coleman RE (eds) (1988) The bone scan and breast cancer. Raven Press, New York

    Google Scholar 

  • Fogelman I, Cook G, Israel O et al (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    PubMed  Google Scholar 

  • Fornasier VL, Horne JG (1975) Metastases to the vertebral column. Cancer 36(2):590–594

    PubMed  CAS  Google Scholar 

  • Fredholm H, Eaker S, Frisell J et al (2009) Breast cancer in young women: poor survival despite intensive treatment. PLoS One 4(11):e7695

    PubMed  Google Scholar 

  • Fuchs E (1882) Das Sarkom des Uvealtractus. Graefes Arch Ophthalmol XII(2):233

    Google Scholar 

  • Galasko CSB (1975) The pathological basis for skeletal scintigraphy. J Bone Joint Surg Am 57B:353–359

    Google Scholar 

  • Gayed I, Vu T, Johnson M et al (2003) Comparison of bone and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in the evaluation of bony metastases in lung cancer. Mol Imaging Biol 5(1):26–31

    PubMed  Google Scholar 

  • Gilbert RW, Kim JH, Posner JB (1978) Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol 3(1):40–51

    PubMed  CAS  Google Scholar 

  • Goldstein H, McNeil BJ, Zufall E et al (1980) Changing indications for bone scintigraphy in patients with osteosarcoma. Radiology 135(1):177–180

    PubMed  CAS  Google Scholar 

  • Guarneri V, Piacentini F, Ficarra G et al (2009) A prognostic model based on nodal status and Ki-67 predicts the risk of recurrence and death in breast cancer patients with residual disease after preoperative chemotherapy. Ann Oncol 20(7):1193–1198

    PubMed  CAS  Google Scholar 

  • Guise TA, Chirgwin JM (2003) Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res (415 Suppl):S32–S38

    Google Scholar 

  • Guise TA, Mundy GR (1998) Cancer and bone. Endocr Rev 19(1):18–54

    PubMed  CAS  Google Scholar 

  • Guise TA, Yin JJ, Taylor SD et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98(7):1544–1549

    PubMed  CAS  Google Scholar 

  • Gutzeit A, Doert A, Froehlich JM et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39(4):333–343

    PubMed  Google Scholar 

  • Hall CL, Bafico A, Dai J et al (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65(17):7554–7560

    PubMed  CAS  Google Scholar 

  • Han LJ, Au-Yong TK, Tong WC et al (1998) Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med 25(6):635–638

    PubMed  CAS  Google Scholar 

  • Healey JH, Brown HK (2000) Complications of bone metastases: surgical management. Cancer 88(12 Suppl):2940–2951

    PubMed  CAS  Google Scholar 

  • Helyar V, Mohan HK, Barwick T et al (2010) The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 37(4):706–713, Epub 2009 Dec 17

    PubMed  Google Scholar 

  • Hendrix RW, Rogers LF, Davis TM Jr (1991) Cortical bone metastases. Radiology 181(2):409–413

    PubMed  CAS  Google Scholar 

  • Hirsh V (2009) Skeletal disease contributes substantially to morbidity and mortality in patients with lung cancer. Clin Lung Cancer 10(4):223–229

    PubMed  Google Scholar 

  • Holder LE (1990) Clinical radionuclide bone imaging. Radiology 176(3):607–614

    PubMed  CAS  Google Scholar 

  • Kambara T, Oyama T, Segawa A et al (2010) Prognostic significance of global grading system of Gleason score in patients with prostate cancer with bone metastasis. BJU Int 105(11):1519–1525, Epub 2009 Nov 12

    PubMed  Google Scholar 

  • Kanberoglu K, Mihmanli I, Kurugoglu S et al (2001) Bone marrow changes adjacent to the sacroiliac joints after pelvic radiotherapy mimicking metastases on MRI. Eur Radiol 11(9):1748–1752

    PubMed  CAS  Google Scholar 

  • Killian CS, Corral DA, Kawinski E et al (1993) Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 192(2):940–947

    PubMed  CAS  Google Scholar 

  • Kosuda S, Ichihara K, Watanabe M et al (2002) Decision-tree sensitivity analysis for cost-effectiveness of whole-body FDG PET in the management of patients with non-small-cell lung carcinoma in Japan. Ann Nucl Med 16(4):263–271

    PubMed  Google Scholar 

  • Langer I, Guller U, Koechli OR et al (2007) Association of the presence of bone marrow micrometastases with the sentinel lymph node status in 410 early stage breast cancer patients: results of the Swiss Multicenter Study. Ann Surg Oncol 14(6):1896–1903

    PubMed  Google Scholar 

  • Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36(1):73–92

    PubMed  Google Scholar 

  • Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25(22):3281–3287

    PubMed  Google Scholar 

  • Lecouvet FE, Vande Berg BC, Malghem J et al (2009) Diffusion-weighted MR imaging: adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 252(2):624

    PubMed  Google Scholar 

  • Levenson RM, Sauerbrunn BJ, Bates HR et al (1983) Comparative value of bone scintigraphy and radiography in monitoring tumor response in systemically treated prostatic carcinoma. Radiology 146(2):513–518

    PubMed  CAS  Google Scholar 

  • Luboldt W, Kufer R, Blumstein N et al (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249(3):1017–1025

    PubMed  Google Scholar 

  • Makis W, Abikhzer G, Rush C (2009) Hypertrophic pulmonary osteoarthropathy diagnosed by FDG PET-CT in a patient with lung adenocarcinoma. Clin Nucl Med 34(9):625–627

    PubMed  Google Scholar 

  • McKillop JH, Etcubanas E, Goris ML (1981) The indications for and limitations of bone scintigraphy in osteogenic sarcoma: a review of 55 patients. Cancer 48(5):1133–1138

    PubMed  CAS  Google Scholar 

  • McNeil BJ (1984) Value of bone scanning in neoplastic disease. Semin Nucl Med 14(4):277–286

    PubMed  CAS  Google Scholar 

  • Merrick MV, Merrick JM (1986) Bone scintigraphy in lung cancer: a reappraisal. Br J Radiol 59(708):1185–1194

    PubMed  CAS  Google Scholar 

  • Messiou C, Cook G, deSouza NM (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101(8):1225–1232

    PubMed  CAS  Google Scholar 

  • Michel F, Soler M, Imhof E et al (1991) Initial staging of non-small cell lung cancer: value of routine radioisotope bone scanning. Thorax 46(7):469–473

    PubMed  CAS  Google Scholar 

  • Mohammad KS, Guise TA (2003) Mechanisms of osteoblastic metastases: role of endothelin-1. Clin Orthop Relat Res (415 Suppl):S67–S74

    Google Scholar 

  • Morgan B, Coakley F, Finlay DB et al (1996) Hypertrophic osteoarthropathy in staging skeletal scintigraphy for lung cancer. Clin Radiol 51(10):694–697

    PubMed  CAS  Google Scholar 

  • Morris MJ, Akhurst T, Larson SM et al (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11(9):3210–3216

    PubMed  CAS  Google Scholar 

  • Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    PubMed  CAS  Google Scholar 

  • Myers RE, Johnston M, Pritchard K et al (2001) Baseline staging tests in primary breast cancer: a practice guideline. CMAJ 164(10):1439–1444

    PubMed  CAS  Google Scholar 

  • Nunez R, Macapinlac HA, Yeung HW et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43(1):46–55

    PubMed  Google Scholar 

  • O’Sullivan JM, Norman AR, Cook GJ et al (2003) Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital. BJU Int 92(7):685–689

    PubMed  Google Scholar 

  • Osborn JL, Getzenberg RH, Trump DL (1995) Spinal cord compression in prostate cancer. J Neurooncol 23(2):135–147

    PubMed  CAS  Google Scholar 

  • Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186

    PubMed  CAS  Google Scholar 

  • Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555

    PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Google Scholar 

  • Palumbo JS, Talmage KE, Massari JV et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185

    PubMed  CAS  Google Scholar 

  • Romer W, Nomayr A, Uder M et al (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47(7):1102–1106

    PubMed  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    PubMed  CAS  Google Scholar 

  • Rossleigh MA, Lovegrove FT, Reynolds PM et al (1982) Serial bone scans in the assessment of response to therapy in advanced breast carcinoma. Clin Nucl Med 7(9):397–402

    PubMed  CAS  Google Scholar 

  • Ruckle HC, Klee GG, Oesterling JE (1994a) Prostate-specific antigen: concepts for staging prostate cancer and monitoring response to therapy. Mayo Clin Proc 69(1):69–79

    PubMed  CAS  Google Scholar 

  • Ruckle HC, Klee GG, Oesterling JE (1994b) Prostate-specific antigen: critical issues for the practicing physician. Mayo Clin Proc 69(1):59–68

    PubMed  CAS  Google Scholar 

  • Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8(3):197–209

    PubMed  CAS  Google Scholar 

  • Saha S, Ali S, Ghanem M et al (2009) Comparative analysis of bone marrow micrometastases with sentinel lymph node status in early-stage breast cancer. Ann Surg Oncol 16(2):276–280

    PubMed  Google Scholar 

  • Sandblom G, Holmberg L, Damber JE et al (2002) Prostate-specific antigen for prostate cancer staging in a population-based register. Scand J Urol Nephrol 36(2):99–105

    PubMed  CAS  Google Scholar 

  • Sanders JL, Chattopadhyay N, Kifor O et al (2000) Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology 141(12):4357–4364

    PubMed  CAS  Google Scholar 

  • Schaberg J, Gainor BJ (1985) A profile of metastatic ­carcinoma of the spine. Spine (Phila Pa 1976) 10(1):19–20

    CAS  Google Scholar 

  • Scher HI (2003) Prostate carcinoma: defining therapeutic objectives and improving overall outcomes. Cancer 97(3 Suppl):758–771

    PubMed  Google Scholar 

  • Schneider A, Kalikin LM, Mattos AC et al (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736

    PubMed  CAS  Google Scholar 

  • Schwartz GF, Hughes KS, Lynch HT et al (2008) Proceedings of the international consensus conference on breast cancer risk, genetics, & risk management, April, 2007. Cancer 113(10):2627–2637

    PubMed  Google Scholar 

  • Shie P, Cardarelli R, Brandon D et al (2008) Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med 33(2):97–101

    PubMed  Google Scholar 

  • Shreve PD, Grossman HB, Gross MD et al (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199(3):751–756

    PubMed  CAS  Google Scholar 

  • Soloway MS, Hardeman SW, Hickey D et al (1988) Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer 61(1):195–202

    PubMed  CAS  Google Scholar 

  • Stenman UH, Abrahamsson PA, Aus G et al (2005) Prognostic value of serum markers for prostate cancer. Scand J Urol Nephrol Suppl 216:64–81

    PubMed  Google Scholar 

  • Sun YX, Schneider A, Jung Y et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329

    PubMed  CAS  Google Scholar 

  • Sung V, Stubbs JT 3rd, Fisher L et al (1998) Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. J Cell Physiol 176(3):482–494

    PubMed  CAS  Google Scholar 

  • Taoka T, Mayr NA, Lee HJ et al (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 176(6):1525–1530

    PubMed  CAS  Google Scholar 

  • Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140(10):4451–4458

    PubMed  CAS  Google Scholar 

  • Traill ZC, Talbot D, Golding S et al (1999) Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol 54(7):448–451

    PubMed  CAS  Google Scholar 

  • Trocciola SM, Hoda S, Osborne MP et al (2005) Do bone marrow micrometastases correlate with sentinel lymph node metastases in breast cancer patients? J Am Coll Surg 200(5):720–725; discussion 25–6

    PubMed  Google Scholar 

  • Tsivian M, Sun L, Mouraviev V et al (2009) Changes in Gleason score grading and their effect in predicting outcome after radical prostatectomy. Urology 74(5):1090–1093

    PubMed  Google Scholar 

  • Tuncel M, Souvatzoglou M, Herrmann K et al (2008) [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35(6):689–695

    PubMed  CAS  Google Scholar 

  • Upadhyay J, Shekarriz B, Nemeth JA et al (1999) Membrane type 1-matrix metalloproteinase (MT1-MMP) and MMP-2 immunolocalization in human prostate: change in cellular localization associated with high-grade prostatic intraepithelial neoplasia. Clin Cancer Res 5(12):4105–4110

    PubMed  CAS  Google Scholar 

  • Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238(1):264–271

    PubMed  Google Scholar 

  • Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168(3):679–693

    PubMed  Google Scholar 

  • Ward RW, Chin R Jr, Keyes JW Jr et al (1995) Digital clubbing. Demonstration with positron emission tomography. Chest 107(4):1172–1173

    PubMed  CAS  Google Scholar 

  • Wharam MD Jr (2006) Ewing sarcoma bone metastases: ‘you see one, you’ve seen them all’: (commentary on Furth et al., page 607). Pediatr Blood Cancer 47(5):533–534

    PubMed  Google Scholar 

  • Yeh SD, Imbriaco M, Larson SM et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23(6):693–697

    PubMed  CAS  Google Scholar 

  • Yi B, Williams PJ, Niewolna M et al (2002) Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res 62(3):917–923

    PubMed  CAS  Google Scholar 

  • Yin JJ, Mohammad KS, Kakonen SM et al (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 100(19):10954–10959

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Van der Wall M.B.B.S., Ph.D., FRACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van der Wall, H., Elison, B., Frater, C., Bruce, W., Clarke, S. (2012). Pathophysiology of Bone Metastases. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds) Radionuclide and Hybrid Bone Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02400-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02399-6

  • Online ISBN: 978-3-642-02400-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics