Skip to main content

Bewegungstherapie bei obstruktiven Atemwegserkrankungen

  • Chapter
Bewegungstherapie bei internistischen Erkrankungen

Zusammenfassung

Unter Asthma bronchiale leiden in Deutschland rund 10% der Kinder und 4–5% der Erwachsenen-damit ist Asthma eine der am weitesten verbreiteten chronischen Erkrankungen, im Kindesalter die häufigste chronische Erkrankung überhaupt. Die Krankheitskosten sind immens. Patienten mit Asthma meiden häufig sportliche Betätigung, da sie oftmals die Erfahrung von Atemnot nach körperlicher Belastung gemacht haben. Die Auswirkungen von körperlichem Training auf erwachsene Asthmatiker sind bislang nur ungenügend untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu 12.1

  1. Weiland SK, Pearce N (2004) Asthma prevalence in adults: good news? Thorax 59:637–638.

    Article  PubMed  CAS  Google Scholar 

  2. Moorman JE, Rudd RA, Johnson CA et al. (2007) National surveillance for asthma — United States, 1980–2004. MMWR Surveill Summ 56: 1–54.

    PubMed  Google Scholar 

  3. Stock S, Redaelli M, Luengen M et al. (2005) Asthma: prevalence and cost of illness. Eur Respir J 25: 47–53.

    Article  PubMed  CAS  Google Scholar 

  4. Schramm B, Ehlken B, Smala A et al. (2003) Cost of illness of atopic asthma and seasonal allergic rhinitis in Germany: 1-yr retrospective study. Eur Respir J 21: 116–122.

    Article  PubMed  CAS  Google Scholar 

  5. Floyer J (1698) A treatise of the asthma. R. Wilkins and W. Innis, London.

    Google Scholar 

  6. Deal EC Jr, McFadden ER Jr, Ingram RH Jr et al. (1979) Role of respiratory heat exchange in production of exercise-induced asthma. J Appl Physiol 46: 467–475.

    PubMed  Google Scholar 

  7. McFadden ER Jr (1990) Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 335: 880–883.

    Article  PubMed  Google Scholar 

  8. Hallstrand TS, Moody MW, Wurfel MM et al. (2005) Inflammatory basis of exercise-induced bronchoconstriction. Am J Respir Crit Care Med 172: 679–686.

    Article  PubMed  Google Scholar 

  9. Freed AN, Davis MS (1999) Hyperventilation with dry air increases airway surface fluid osmolality in canine peripheral airways. Am J Respir Crit Care Med 159: 1101–1107.

    PubMed  CAS  Google Scholar 

  10. Weiler JM, Bonini S, Coifman R et al. (2007) American Academy of Allergy, Asthma & Immunology Work Group report: exercise-induced asthma. J Allergy Clin Immunol 119: 1349–1358.

    Article  PubMed  Google Scholar 

  11. Spooner CH, Spooner GR, Rowe BH (2003) Mastcell stabilising agents to prevent exercise-induced bronchoconstriction. Cochrane Database Syst Rev. 2003:CD002307.

    Google Scholar 

  12. Mickleborough TD, Lindley MR, Turner LA (2007) Comparative effects of a high-intensity interval warm-up and salbutamol on the bronchoconstrictor response to exercise in asthmatic athletes. Int J Sports Med 28: 456–462.

    Article  PubMed  CAS  Google Scholar 

  13. Kosmas EN, Milic-Emili J, Polychronaki A et al. (2004) Exercise-induced flow limitation, dynamic hyperinflation and exercise capacity in patients with bronchial asthma. Eur Respir J 24: 378–384.

    Article  PubMed  CAS  Google Scholar 

  14. Lecheler J, Gauer S (1991) Schuldefizite chronisch asthmakranker Kinder und Jugendlicher. Monatsschr Kinderheilkd 139: 69–72.

    PubMed  CAS  Google Scholar 

  15. Meyer A, Machnick MA, Behnke W et al. (2002) Teilnahme von asthmakranken Kindern am Schulsport. Pneumologie 56: 486–492.

    Article  PubMed  CAS  Google Scholar 

  16. Clark CJ, Cochrane LM (1988) Assessment of work performance in asthma for determination of cardiorespiratory fitness and training capacity. Thorax 43: 745–749.

    Article  PubMed  CAS  Google Scholar 

  17. Garfinkel SK, Kesten S, Chapman KR et al. (1992) Physiologic and nonphysiologic determinants of aerobic fitness in mild to moderate asthma. Am Rev Respir Dis 145: 741–745.

    PubMed  CAS  Google Scholar 

  18. Santuz P, Baraldi E, Filippone M et al. (1997) Exercise performance in children with asthma: is it different from that of healthy controls? Eur Respir J 10: 1254–1260.

    Article  PubMed  CAS  Google Scholar 

  19. Mancuso CA, Choi TN, Westermann H et al. (2007) Measuring physical activity in asthma patients: two-minute walk test, repeated chair rise test, and self-reported energy expenditure. J Asthma 44: 333–340.

    Article  PubMed  Google Scholar 

  20. Becker JM, Rogers J, Rossini G et al. (2004) Asthma deaths during sports: report of a 7-year experience. J Allergy Clin Immunol 113: 264–267.

    Article  PubMed  Google Scholar 

  21. Ram FS, Robinson SM, Black PN, Picot J (2005) Physical training for asthma. Cochrane Database Syst Rev 2005:CD001116.

    Google Scholar 

  22. Cochrane LM, Clark CJ (1990) Benefits and problems of a physical training programme for asthmatic patients. Thorax 45: 345–351.

    Article  PubMed  CAS  Google Scholar 

  23. Girodo M, Ekstrand KA, Metivier GJ (1992) Deep diaphragmatic breathing: rehabilitation exercises for the asthmatic patient. Arch Phys Med Rehabil 73: 717–720.

    PubMed  CAS  Google Scholar 

  24. Cambach W, Chadwick-Straver RV, Wagenaar RC et al. (1997) The effects of a community-based pulmonary rehabilitation programme on exercise tolerance and quality of life: a randomized controlled trial. Eur Respir J 10: 104–113.

    Article  PubMed  CAS  Google Scholar 

  25. Neder JA, Nery LE, Silva AC et al. (1999) Short-term effects of aerobic training in the clinical management of moderate to severe asthma in children. Thorax 54: 202–206.

    Article  PubMed  CAS  Google Scholar 

  26. Meyer A, Wendt G, Taube K et al. (1997) Ambulanter Asthmasport verbessert die körperliche Fitness und reduziert asthmabedingte Krankenhaustage. Pneumologie 51: 845–849.

    PubMed  CAS  Google Scholar 

  27. Meyer A, Günther S, Vollmer T et al. (1998) Physical training of adult asthmatics once a week in an outpatient setting. Eur Respir J 11: 227.

    Google Scholar 

  28. Vieira RP, Claudino RC, Duarte AC et al. (2007) Aerobic exercise decreases chronic allergic lung inflammation and airway remodeling in mice. Am J Respir Crit Care Med 176: 871–877.

    Article  PubMed  Google Scholar 

  29. Ostrowski K, Rohde T, Asp S et al. (1999) Pro-and antiinflammatory cytokine balance in strenuous exercise in humans. J Physiol 515 (Pt 1): 287–291.

    Article  PubMed  CAS  Google Scholar 

  30. Helenius I, Haahtela T (2000) Allergy and asthma in elite summer sport athletes. J Allergy Clin Immunol 106: 444–452.

    Article  PubMed  CAS  Google Scholar 

  31. Helenius I, Rytila P, Sarna S et al. (2002) Effect of continuing of finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: a 5-year prospective follow-up study of 42 highly trained swimmers. J Allergy Clin Immunol 109: 962–968.

    Article  PubMed  Google Scholar 

  32. ACSM. American College of Sports Medicine Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiore-spiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30: 975–991.

    Google Scholar 

  33. Emtner M, Herala M, Stalenheim G (1996) High-intensity physical training in adults with asthma. A 10-week rehabilitation program. Chest 109: 323–330.

    CAS  Google Scholar 

  34. Worth H, Meyer A, Folgering H et al. (2000) Empfehlungen der Deutschen Atemwegsliga zum Sport und körperlichen Training bei Patienten mit obstruktiven Atemwegserkrankungen. Pneumologie 54: 61–67.

    Article  PubMed  CAS  Google Scholar 

  35. Baumann HJ, Kluge S, Klose H et al. (2009) Herzfrequenzmessung zur Bestimmung der Trainingsintensität in Lungensportgruppen. Pneumologie 63: 72–77.

    Article  PubMed  CAS  Google Scholar 

Literatur zu 12.2

  1. Geldmacher H, Biller H, Herbst A et al. (2008) [The prevalence of chronic obstructive pulmonary disease (COPD) in Germany. Results of the BOLD study]. Dtsch Med Wochenschr 133(50): 2609–2614.

    Article  PubMed  CAS  Google Scholar 

  2. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349(9064): 1498–1504.

    Article  PubMed  CAS  Google Scholar 

  3. Rychlik R, Pfeil T, Daniel D et al. (2001) Zur sozioökonomischen Relevanz akuter Exazerbationen der chronischen Bronchitis in der Bundesrepublik Deutschland. Eine prospektive Krankheitskostenstudie. Dtsch Med Wochenschr 126(13): 353–359.

    Article  PubMed  CAS  Google Scholar 

  4. Vogelmeier C, Buhl R, Criee CP et al. (2007) Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). Pneumologie 61(5): E1–40.

    Article  PubMed  CAS  Google Scholar 

  5. Celli BR, MacNee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6): 932–946.

    Article  PubMed  CAS  Google Scholar 

  6. Celli BR, Cote CG, Marin JM et al. (2004) The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 350(10): 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  7. Bernard S, LeBlanc P, Whittom F et al. (1998) Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(2): 629–634.

    PubMed  CAS  Google Scholar 

  8. Schols AM, Soeters PB, Dingemans AM et al. (1993) Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis 147(5): 1151–1156.

    PubMed  CAS  Google Scholar 

  9. Hopkinson NS, Tennant RC, Dayer MJ et al. (2007) A prospective study of decline in fat free mass and skeletal musde strength in chronic obstructive pulmonary disease. Respir Res 8: 25.

    Article  PubMed  Google Scholar 

  10. Hughes RL, Katz H, Sahgal V et al. (1983) Fiber size and energy metabolites in five separate muscles from patients with chronic obstructive lung diseases. Respiration 44(5): 321–328.

    Article  PubMed  CAS  Google Scholar 

  11. Whittom F, Jobin J, Simard PM et al. (1998) Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 30(10): 1467–1474.

    Article  PubMed  CAS  Google Scholar 

  12. Saey D, Michaud A, Couillard A et al. (2005) Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171(10): 1109–1115.

    Article  PubMed  Google Scholar 

  13. Maltais F, Simard AA, Simard C et al. (1996) Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med 153(1): 288–293.

    PubMed  CAS  Google Scholar 

  14. Sala E, Roca J, Marrades RM et al. (1999) Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159(6): 1726–1734.

    PubMed  CAS  Google Scholar 

  15. Sato Y, Asoh T, Honda Y et al. (1997) Morphologic and histochemical evaluation of muscle in patients with chronic pulmonary emphysema manifesting generalized emaciation. Eur Neurol 37(2): 116–121.

    Article  PubMed  CAS  Google Scholar 

  16. Rabinovich RA, Figueras M, Ardite E et al. (2003) Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J 21(5): 789–794.

    Article  PubMed  CAS  Google Scholar 

  17. Broekhuizen R, Wouters EF, Creutzberg EC et al. (2006) Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 61(1): 17–22.

    Article  PubMed  CAS  Google Scholar 

  18. ATS (1999) Skeletal muscle dysfunction in chronic obstructive pulmonary disease. A statement of the American Thoracic Society and European Respiratory Society. Am J Respir Crit Care Med 159(4 Pt 2): S1–40.

    Google Scholar 

  19. Stubbings AK, Moore AJ, Dusmet M et al. (2008) Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol 586(10): 2637–2650.

    Article  PubMed  CAS  Google Scholar 

  20. Pouw EM, Koerts-de Lang E, Gosker HR et al. (2000) Muscle metabolic status in patients with severe COPD with and without long-term prednisolone. Eur Respir J 16(2): 247–252.

    Article  PubMed  CAS  Google Scholar 

  21. Casaburi R, Patessio A, Ioli F et al. (1991) Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis 143(1): 9–18.

    PubMed  CAS  Google Scholar 

  22. Levine S, Kaiser L, Leferovich J et al. (1997) Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337(25): 1799–1806.

    Article  PubMed  CAS  Google Scholar 

  23. Levine S, Gregory C, Nguyen T et al. (2002) Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol 92(3): 1205–1213.

    PubMed  Google Scholar 

  24. Doucet M, Debigare R, Joanisse DR et al. (2004) Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD. Eur Respir J 24(6): 971–979.

    Article  PubMed  CAS  Google Scholar 

  25. Rochester DF, Braun NM. (1985) Determinants of maximal inspiratory pressure in chronic obstructive pulmonary disease. Am Rev Respir Dis 132(1): 42–47.

    PubMed  CAS  Google Scholar 

  26. Perez T, Becquart LA, Stach B et al. (1996) Inspiratory muscle strength and endurance in steroid-dependent asthma. Am J Respir Crit Care Med 153(2): 610–615.

    PubMed  CAS  Google Scholar 

  27. Criee CP (2003) [Recommendations of the German Airway League (Deutsche Atemwegsliga) for the determination of inspiratory muscle function]. Pneumologie 57(2): 98–100.

    Article  PubMed  Google Scholar 

  28. Heijdra YE, Dekhuijzen PN, van Herwaarden CL et al. (1996) Nocturnal saturation improves by target-flow-in-spiratory muscle training in patients with COPD. Am J Respir Crit Care Med 153(1): 260–265.

    PubMed  CAS  Google Scholar 

  29. O’Donnell DE, Bertley JC, Chau LK et al. (1997) Qualitative aspects of exertional breathlessness in chronic air-flow limitation: pathophysiologic mechanisms. Am J Respir Crit Care Med 155(1): 109–115.

    PubMed  Google Scholar 

  30. Sheel AW, Derchak PA, Pegelow DF et al. (2002) Threshold effects of respiratory muscle work on limb vascular resistance. Am J Physiol Heart Circ Physiol 282(5): H1732–1738.

    PubMed  CAS  Google Scholar 

  31. Fuchs-Climent D, Le Gallais D, Varray A et al. (1999) Quality of life and exercise tolerance in chronic obstructive pulmonary disease: effects of a short and intensive inpatient rehabilitation program. Am J Phys Med Rehabil 78(4): 330–335.

    Article  PubMed  CAS  Google Scholar 

  32. Puhan MA, Scharplatz M, Troosters T et al. (2005) Respiratory rehabilitation after acute exacerbation of COPD may reduce risk for readmission and mortality — a systematic review. Respir Res 6(1): 54.

    Article  PubMed  Google Scholar 

  33. Emery CF, Schein RL, Hauck ER et al. (1998) Psychological and cognitive outcomes of a randomized trial of exercise among patients with chronic obstructive pulmonary disease. Health Psychol 17(3): 232–240.

    Article  PubMed  CAS  Google Scholar 

  34. Palange P, Ward SA, Carlsen K-H et al. (2007) Recommendations on the use of exercise testing in clinical practice. European Respiratory Journal 29: 185–209.

    Article  PubMed  CAS  Google Scholar 

  35. Gallefoss F, Bakke PS (2002) Cost-benefit and cost-effectiveness analysis of self-management in patients with COPD—a 1-year follow-up randomized, controlled trial. Respir Med 96(6): 424–431.

    Article  PubMed  Google Scholar 

  36. Rossi G, Florini F, Romagnoli M et al. (2005) Length and clinical effectiveness of pulmonary rehabilitation in outpatients with chronic airway obstruction. Chest 127(1): 105–109.

    Article  PubMed  Google Scholar 

  37. Salman GF, Mosier MC, Beasley BW et al. (2003) Rehabilitation for patients with chronic obstructive pulmonary disease: meta-analysis of randomized controlled trials. J Gen Intern Med 18(3): 213–221.

    Article  PubMed  Google Scholar 

  38. Ringbaek TJ, Broendum E, Hemmingsen L et al. (2000) Rehabilitation of patients with chronic obstructive pulmonary disease. Exercise twice a week is not sufficient! Respir Med 94(2): 150–154.

    Article  PubMed  CAS  Google Scholar 

  39. Puente-Maestu L, Sanz ML, Sanz P et al. (2000) Effects of two types of training on pulmonary and cardiac responses to moderate exercise in patients with COPD. Eur Respir J 15(6): 1026–1032.

    Article  PubMed  CAS  Google Scholar 

  40. Engstrom CP, Persson LO, Larsson S et al. (1999) Long-term effects of a pulmonary rehabilitation programme in outpatients with chronic obstructive pulmonary disease: a randomized controlled study. Scand J Rehabil Med 31(4): 207–213.

    Article  PubMed  CAS  Google Scholar 

  41. Ries AL, Kaplan RM, Myers R et al. (2003) Maintenance after pulmonary rehabilitation in chronic lung disease: a randomized trial. Am J Respir Crit Care Med 167(6): 880–888.

    Article  PubMed  Google Scholar 

  42. Clark CJ, Cochrane LM, Mackay E (1996) Low intensity peripheral muscle conditioning improves exercise tolerance and breathlessness in COPD. Eur Respir J 9: 2590–2596.

    Article  PubMed  CAS  Google Scholar 

  43. Normandin EA, McCusker C, Connors M et al. (2002) An evaluation of two approaches to exercise conditioning in pulmonary rehabilitation. Chest 121(4): 1085–1091.

    Article  PubMed  Google Scholar 

  44. Casaburi R, Porszasz J, Burns MR et al. (1997) Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155(5): 1541–1551.

    PubMed  CAS  Google Scholar 

  45. Barreiro E, Rabinovich R, Marin-Corral J et al. (2009) Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax 64(1): 13–19.

    Article  PubMed  CAS  Google Scholar 

  46. Weineck J (1997) Optimales Training. Leistungsphysiologische Trainingslehre. Balingen: Spitta, Balingen

    Google Scholar 

  47. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5): 377–381.

    PubMed  CAS  Google Scholar 

  48. Vallet G, Ahmaidi S, Serres I et al. (1997) Comparison of two training programmes in chronic airway limitation patients: standardized versus individualized protocols. Eur Respir J 10(1): 114–122.

    Article  PubMed  CAS  Google Scholar 

  49. Baumann HJ, Kluge S, Klose H et al. (2009) [Heart rate measurement for determination of training intensity in outpatient pulmonary sport groups]. Pneumologie 63(2): 72–77.

    Article  PubMed  CAS  Google Scholar 

  50. Lake FR, Henderson K, Briffa T et al. (1990) Upper-limb and lower-limb exercise training in patients with chronic airflow obstruction. Chest 97(5): 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  51. Epstein SK, Celli BR, Martinez FJ et al. (1997) Arm training reduces the VO2 and VE cost of unsupported arm exercise and elevation in chronic obstructive pulmonary disease. J Cardiopulm Rehabil 17(3): 171–177.

    Article  PubMed  CAS  Google Scholar 

  52. Maltais F, LeBlanc P, Jobin J et al. (1997) Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155(2): 555–561.

    PubMed  CAS  Google Scholar 

  53. ACSM (1998) American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30(6): 975–991.

    Article  Google Scholar 

  54. Coppoolse R, Schols AM, Baarends EM et al. (1999) Interval versus continuous training in patients with severe COPD: a randomized clinical trial. Eur Respir J 14(2): 258–263.

    Article  PubMed  CAS  Google Scholar 

  55. Sabapathy S, Kingsley R, Schneider D et al. (2004) Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease. Thorax 5: 1026–1031.

    Article  Google Scholar 

  56. Simpson K, Killian K, McCartney N et al. (1992) Randomised controlled trial of weightlifting exercise in patients with chronic airflow limitation. Thorax 47(2): 70–75.

    Article  PubMed  CAS  Google Scholar 

  57. Spruit MA, Gosselink R, Troosters T et al. (2002) Resistance versus endurance training in patients with COPD and peripheral muscle weakness. Eur Respir J 19(6): 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  58. Ortega F, Toral J, Cejudo P et al. (2002) Comparison of effects of strength and endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(5): 669–674.

    Article  PubMed  Google Scholar 

  59. Clark CJ, Cochrane LM, Mackay E et al. (2000) Skeletal muscle strength and endurance in patients with mild COPD and the effects of weight training. Eur Respir J 15(1): 92–97.

    Article  PubMed  CAS  Google Scholar 

  60. O’Shea SD, Taylor NF, Paratz J (2004) Peripheral muscle strength training in COPD: a systematic review. Chest 126(3): 903–914.

    Article  PubMed  Google Scholar 

  61. Göhl O, Linz H, Schonleben T et al. (2006) Effekte eines multimodularen ambulanten Trainingsprogramms für Patienten mit COPD. Pneumologie. Sep 2006;60(9): 529–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, A., Baumann, H.J. (2010). Bewegungstherapie bei obstruktiven Atemwegserkrankungen. In: Braumann, KM., Stiller, N. (eds) Bewegungstherapie bei internistischen Erkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01332-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01332-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01331-7

  • Online ISBN: 978-3-642-01332-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics