Skip to main content

Cutting

  • Chapter
  • First Online:
Tailored Light 2

Part of the book series: RWTHedition ((RWTH))

  • 2048 Accesses

Abstract

Laser oxygen cutting uses oxygen as the process gas. In comparison with inert gases used for laser fusion cutting, such as nitrogen, oxygen provides not only for the ejection of the molten material out of the cut kerf but also for the burning of the material. In an exothermic reaction iron oxide is basically generated with a reaction enthalpy of approx. 4,800 kJ per 1 kg iron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Franke, W. Schulz, G. Herziger, Abbrandstabilisiertes Laserstrahlbrennschneiden – ein neues Verfahren, Schweiβen und Schneiden 45 (1993), Heft 9, S. 490–493

    Google Scholar 

  2. W. O. Neill, J. T. Gabzdyl, New developments in laser-assisted oxygen cutting, Optics and Lasers in Engineering 34 (2000), 355–367

    Article  Google Scholar 

  3. W. Schulz, D. Becker, J. Franke, G. Herziger, Heat conduction losses in laser cutting of metals, Journal of Physics D: Applied Physics 26 (1993), S. 1357–1363

    Article  Google Scholar 

  4. J. Powell, D. Petring, R. V. Kumar, S. O. Al-Mashikhi, A. F. H. Kaplan, K. T. Voisey, Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction, Journal of Physics D: Applied Physics 42 (2009), 015504 (11pp)

    Google Scholar 

  5. J. W. Franke, Modellierung und Optimierung des Laserstrahlbrennschneidens niedriglegierter Stähle, Dissertation RWTH Aachen (1994), DSV-Berichte Band 161

    Google Scholar 

  6. Y. Arata et al., Dynamic behavior in laser gas cutting of mild steel, Transactions of JWRI, 8 (1979), S. 15–25

    Google Scholar 

  7. Schneiden mit CO2-Lasern, Handbuchreihe Laser in der Materialbearbeitung, Band 1, VDI Technologiezentrum, VDI Verlag Düsseldorf (1993)

    Google Scholar 

  8. D. Petring, Anwendungsgestützte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozeβoptimierung, Dissertation RWTH Aachen (1995)

    Google Scholar 

  9. A. F. H. Kaplan, Theoretical Analysis of Laser Beam Cutting, Shaker-Verlag, Aachen (2002), (Berichte aus der Fertigungstechnik)

    Google Scholar 

  10. E. Truckenbrodt, Fluidmechanik, Band 2, Springer-Verlag, Berlin Heidelberg New York (1980), S.30ff

    Google Scholar 

  11. K.-U. Preiβig, Verfahrens- und Anlagenentwicklung zum Laserstrahl-Hochgeschwindigkeitsschneiden von metallischem Bandmaterial, Dissertation RWTH Aachen (1995)

    Google Scholar 

  12. D. Petring, K.-U. Preiβig, H. Zefferer, E. Beyer, Plasma effects in laser beam cutting, 3. Internationale Konferenz Strahltechnik, Karlsruhe (1991) DVS-Berichte Band 135, S 251 ff

    Google Scholar 

  13. F. Schneider, D. Petring, R. Poprawe, Increasing Laser Beam Cutting Speeds, Proc. ICALEO 99, San Diego, USA, LIA Vol. 87, Section C, (2000), S. 132–141

    Google Scholar 

  14. D. Petring, F. Schneider, C. Thelen, R. Poprawe, Mit Sicherheit schnell: Neue Entwicklungen zum Laserstrahlschneiden von Fein- und Feinstblechen, LaserOpto 31 (1999) Nr.2, 1999, S. 70ff

    Google Scholar 

  15. F. Schneider, D. Bingener, H.-D. Riehn, Prozeβüberwachung und –regelung beim Laserstrahl-Hochgeschwindigkeitsscheiden, Laser und Optoelektronik 29(2), (1997), S. 59–65

    Google Scholar 

  16. L. Morgenthal, E. Pfeiffer, E. Beyer, Laser Konturschneiden von Elektroblechsegmenten, LaserOpto, Band 31 (1999) Heft 2, 1999, S. 66–69

    Google Scholar 

  17. G. Herziger, P. Loosen, Werkstoffbearbeitung mit Laserstrahlung, Grundlagen-Systeme-Verfahren, Carl Hanser Verlag München Wien (1993)

    Google Scholar 

  18. Laser Institute of America: Handbook of Laser Materials Processing, (2001), Editor in Chief: John F. Ready

    Google Scholar 

  19. M.C. Sharp, Cutting and drilling with average power pulsed Nd:YAG lasers including fibre optics delivery. Power Beam Technology, (September 1990), 239–247

    Google Scholar 

  20. F. Caiazzoa, F. Curcio, G. Daureliob, F. Memola Capece Minutolo, Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam, Journal of Materials Processing Technology, 159(3), (10 February 2005), 279–285

    Google Scholar 

  21. S. Bednarczyk, R. Bechir, P. Baclet, Lasermicro-machining of small objects for high-energy laser experiments, Applied Physics A 69 [Suppl.], (1999), S495–S500

    Article  Google Scholar 

  22. X. C. Wang, Z. L. Lia, T. Chena, B. K. Loka, D. K. Y. Lowa, 355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates, Optics and Lasers in Engineering, 46(5), (2008), 404–409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seme, B., Schneider, F. (2011). Cutting. In: Poprawe, R. (eds) Tailored Light 2. RWTHedition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01237-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01237-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01236-5

  • Online ISBN: 978-3-642-01237-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics