Skip to main content

Why Phylogenetic Trees are Often Quite Robust Against Lateral Transfers

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

The circular order of a tree is the order at which the leaves are encountered in a clockwise scanning of a tree. The circular order of a tree is quite robust against lateral transfers. We show that if lateral transfers are only between consecutive nodes, the tree reconstructed with the Neighbor-Joining algorithm furnishes a perfect order of the nodes. The order of the node corresponds to one of the possible orders of the tree prior to lateral transfer. This result permits to understand why phylogenies obtained from molecular data often furnish reasonable trees despite lateral transfers. Using the mathematical framework introduced in the first part of this chapter, new methods to localize lateral transfers are presented. These methods use minimum contradiction matrices to identify lateral transfers. Several examples on real data show the potential of minimum contradiction matrices in phylogenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandelt HJ and Dress A (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1:242–252

    Article  CAS  PubMed  Google Scholar 

  • Beiko R and Hamilton N (2006) Phylogenetic identification of lateral transfer events. BMC Evol Biol 6:15

    Article  PubMed  Google Scholar 

  • Boc A and Makarenkov V (2003) New efficient algorithm for detection of horizontal gene transfer events, Algorithms in Bioinformatics, Benson G and Page R (eds), Third Workshop on Algorithms in Bioinformatics, Springer-Verlag, New York, pp 190–201

    Chapter  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21: 255–265

    Article  CAS  Google Scholar 

  • Buneman P (1971) The recovery of trees from measures of dissimilarity. In: Hodson FR, Kendall DG, Tautu P (eds). Mathematics in the archaeological and historical sciences. Edinburgh University Press, Edinburgh, pp 387–395

    Google Scholar 

  • Cai JJ, Smith DK, Xuhua Xia,Kwok-yung Yuen (2005) MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution. BMC Bioinfor 6–64

    Google Scholar 

  • Christopher GE, Farach M, Trick MA (1996) The structure of circular decomposable metrics. In European Symposium on Algorithms (ESA)’96, Lectures Notes in Computer Science 1136: 455–500

    Google Scholar 

  • Deineko V, Rudolf R and Woeginger G (1995) Sometimes traveling is easy: the master tour problem, Institute of Mathematics, SIAM J Discrete Math 11:81–93

    Article  Google Scholar 

  • Doolittle WF (2000) Uprooting the tree of life, Scientific American, February issue, 90–95

    Google Scholar 

  • Dutilh BE, Noort V, Heijden RTJM, Boekhout T, Snel B, Huynen MA. (2007) Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics 23:815–824

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, House CH. (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4718–4222

    Article  Google Scholar 

  • Fukami-Kobayashi K, Minezaki Y, Tateno Y, Nishikawa K. (2007) A tree of life based on protein domain organizations. Mol Biol Evol 24:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Gascuel O, Steel M (2006) Neighbor-joining revealed. Mol Biol Evol 23:1997–2000

    Article  CAS  PubMed  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Kalmanson K. (1975) Edgeconvex circuits and the traveling salesman problem. Can J Math 27:1000–1010

    Article  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA. (2005a) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959

    Article  CAS  PubMed  Google Scholar 

  • Kunin V, Ahren D, Goldovsky L, Janssen P Ouzounis CA. (2005b) Measuring genome conservation across taxa: divided strains and united kingdoms. Nucleic Acids Res 33(2):616–621

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Pachter L (2009) The neighbor-net algorithm, Adv Appl Math, in press. http://arxiv.org/abs/math/0702515.

  • McLeod D, Charlebois R, Doolittle F, Bapteste E (2005) Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evol Biol 5:27

    Article  Google Scholar 

  • Makarenkov V, Leclerc B (1997) Circular orders of tree metrics, and their uses for the reconstruction and fitting of phylogenetic trees. In: Mirkin B, Morris FR, Roberts F, Rzhetsky A. (eds). Mathematical hierarchies and Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Providence: Am. Math. Soc. pp 183–208

    Google Scholar 

  • Makarenkov V, Kevorkov D, Legendre P (2006) Phylogenetic network construction approaches. Appl Mycol Biotechnol Intl Elsevier Ser 6. Bioinformatics 61–97

    Google Scholar 

  • Mihaescu R, Levy D, Pachter L (2006) Why neighbour joining works. arXiv cs.DS/0602041, Accessed 20 May 2007, http://arxiv.org/PS_cache/cs/pdf/0602/0602041v3.pdf.

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–25

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-see hydrothermal vents environments. Genetics 152:1285–1297

    CAS  PubMed  Google Scholar 

  • Thuillard M (2007) Minimizing contradictions on circular order of phylogenic trees. Evol Bioinformat 3:267–277

    Google Scholar 

  • Thuillard M (2008) Minimum contradiction matrices in whole genome phylogenies. Evol Bioinformat 4:237–247

    CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Wuyts J, Perriere G Van de Peer Y (2004) The European ribosomal RNA database. Nucleic Acids Res 32:D101–103

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld J, Nemergut D, Knight R (2008) Are all horizontal transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiology 154:1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thuillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thuillard, M. (2009). Why Phylogenetic Trees are Often Quite Robust Against Lateral Transfers. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00952-5_16

Download citation

Publish with us

Policies and ethics