Skip to main content

Near-Real Time Satellite Products to Drive Australia-Wide Land Surface Monitoring and Modelling of Surface Water and Energy Balance

  • Chapter
  • First Online:
Innovations in Remote Sensing and Photogrammetry

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 1974 Accesses

Abstract

The Bureau of Meteorology continuously acquires low resolution multispectral image data, with continental coverage of Australia in near-real time, from both the Advanced Very High Resolution Radiometer (AVHRR) on the US National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from the geostationary imagers on Japan’s MTSAT-1R and China’s Fengyun-2C satellites. The Bureau routinely derives several products from these satellites which can serve as continuous data streams that can contribute to operational land surface monitoring, either directly or as inputs (drivers or constraints) to land surface models. Solar radiation, in the form of fields of integrated daily solar horizontal exposure, is produced daily from MTSAT-1R visible-band data. A 17-year climatology of daily solar radiation has recently been produced by processing archived satellite data from 1990 to 2006, and will find application in agriculture, solar energy planning, building design, and surface energy balance studies. The Bureau is implementing operational production of Normalised Difference Vegetation Index (NDVI) and land surface temperature (LST) from AVHRR data using the Common AVHRR Processing System (CAPS) software developed by CSIRO, for use in applications that require national monitoring of vegetation condition. All of these products are produced on a 0.05° national grid: at least once per day for LST, daily for solar exposure, and weekly for NDVI. The AVHRR data products and solar exposure can together serve as near-real time continental inputs to systems for the assessment of surface moisture status across Australia, based either on simple surface energy balance models or more complex land surface models. The Australian Water Availability Project, a collaboration between the Bureau of Rural Sciences, CSIRO and the Bureau of Meteorology, is using such an approach with the data streams described to establish national monitoring of land surface water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barber J (1989) Remote sensing strategies for monitoring grassland fire fuels. Ph.D. thesis, University of Melbourne

    Google Scholar 

  • Brown ME, Pinzon JE, Morisette JT, Didan K, Tucker CJ (2005) Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans Geosci Remote Sens 44:1787–1793

    Article  Google Scholar 

  • Davies HL (2002) The NAP (N-Dimensional Array Processor) extension to Tcl. In: Ninth Annual Tcl/Tk Conference, http://tcl-nap.sourceforge.net/nap_paper2002.pdf

  • Dilley AC, Edwards M (1998) The automatic processing of ASDA format NOAA HRPT data at CSIRO DAR. Internal Paper 6, CSIRO Division of Atmospheric Research, Aspendale, Australia

    Google Scholar 

  • Dilley AC, Edwards M, O‘Brien DM, Mitchell RM (2000) Operational AVHRR processing modules: Atmospheric correction, cloud masking and BRDF compensation. Internal Paper 14, CSIRO Division of Atmospheric Research, Aspendale, Australia

    Google Scholar 

  • Heidinger AK, Venkata RA, Dean C (2002) Using MODIS to estimate cloud contamination of the AVHRR record. J Atmos Ocean Technol 19:586–601

    Article  Google Scholar 

  • Huete AR, Didan K, Muira T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Google Scholar 

  • King EA (2003) The Australian AVHRR data set at CSIRO/EOC: Origins, processes, holdings and prospects. Report 2003/32, CSIRO Atmospheric Research, Canberra, Australia

    Google Scholar 

  • Koepke P, Hess M, Schult I, Shettle EP (1997) Global aerosol data set. Report 243, Max-Planck Institut fur Meteorologie, Hamburg, Germany

    Google Scholar 

  • Liang S, Strahler AH, Walthall C (1999) Retrieval of land surface albedo from satellite observations: A simulation study. J Appl Meteor 38:712–725

    Article  Google Scholar 

  • McVicar TR, Jupp DLB (2002) Using covariates to spatially interpolate moisture availability in the Murray-Darling basin: A novel use of remotely sensed data. Remote Sens Environ 79:199–212

    Google Scholar 

  • Minnis P, Nguyen L, Doelling DR, Young DF, Miller WF, Kratz DP (2002) Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references. J Atmos Ocean Technol 19:1233–1249

    Article  Google Scholar 

  • Mitchell RM (1999) Calibration status of the NOAA AVHRR solar reflectance channels: CalWatch revision 1. Technical paper 42, CSIRO Atmospheric Research, Aspendale, Australia

    Google Scholar 

  • Mitchell RM, O‘Brien DM (1993) Correction of AVHRR shortwave channels for the effects of atmospheric scattering and absorption. Remote Sens Environ 46:129–145

    Google Scholar 

  • Miura T, Huete A, Yoshioka H (2006) An empirical investigation of cross-sensor relationships of NDVI and red/near-infrared reflectance using EO-1 hyperion data. Remote Sens Environ 100:223–236

    Article  Google Scholar 

  • Paltridge GW, Barber J (1988) Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sens Environ 25:381–394

    Article  Google Scholar 

  • Rao CRN, Chen J (1999) Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int J Remote Sensing 20:3485–3491

    Article  Google Scholar 

  • Schaaf CB et al. (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  • Sobrino JA, Rassouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int J Remote Sensing 21:353–366

    Article  Google Scholar 

  • Stowe LL, David PA, McClain EP (1998) Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J Atmos Ocean Technol 16:656–681

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z-L (2004) Quality assessment and validation of the MODIS global land-surface temperature. Int J Remote Sensing 25:261–274

    Article  Google Scholar 

  • Weymouth GT, Le Marshall JF (1999) An operational system to estimate global solar exposure over the Australian region from satellite observations 1. Method and the initial climatotogy. Aust Meteor Mag 48:181–195

    Google Scholar 

  • Weymouth GT, Le Marshall JF (2001) Estimation of daily surface solar exposure using GMS-5 stretched-VISSR observations: The system and basic results. Aust Meteor Mag 50:263–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.F. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, I. (2009). Near-Real Time Satellite Products to Drive Australia-Wide Land Surface Monitoring and Modelling of Surface Water and Energy Balance. In: Jones, S., Reinke, K. (eds) Innovations in Remote Sensing and Photogrammetry. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93962-7_13

Download citation

Publish with us

Policies and ethics