Skip to main content

Hybrid Super/Subthreshold Design of a Low Power Scalable-Throughput FFT Architecture

  • Conference paper
Book cover High Performance Embedded Architectures and Compilers (HiPEAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5409))

Abstract

In this paper, we present a parallel implementation of a 1024 point Fast Fourier Transform (FFT) operating at subthreshold voltage, which is below the voltage that turns the transistors on and off. Even though the transistors are not actually switching as usual in this region, they are able to complete the computation by modulating the leakage current that passes through them, resulting in a 20-100x decrease in power consumption. Our hybrid FFT design partitions a sequential butterfly FFT architecture into two regions, namely memory banks and processing elements, such that the former runs at superthreshold and the latter in the subthreshold voltage region. For a given throughput, the number of parallel processing units and their supply voltage is determined such that the overall power consumption of the design is minimized. For a 1024 point FFT operation, our parallel design is able to deliver the same throughput as a serial design, while consuming 65% less power. We study the effectiveness of this method for a variable throughput application such as a sensor node switching between a low throughput and high throughput mode, e.g. when sensing an interesting event. We compare our method with other methods used for throughput scaling such as voltage scaling and clock scaling and find that our scaling method will last up to three times longer on battery power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Burd, T.D., Brodersen, R.W.: Energy efficient cmos microprocessor design. In: HICSS 1995: Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS 1995), Washington, DC, USA, p. 288. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  3. Calhoun, B.H., Chandrakasan, A.: A 256kb sub-threshold SRAM in 65nm CMOS. In: IEEE International Solid-State Circuits Conference, 2006, ISSCC 2006. Digest of Technical Papers, pp. 2592–2601 (February 2006)

    Google Scholar 

  4. Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS Design. Kluwer Academic Publishers, Norwell (1995)

    Book  Google Scholar 

  5. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design. IEEE Journal of Solid-State Circuits 27(4), 473–484 (1992)

    Article  Google Scholar 

  6. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Mathematics of Computation 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dreslinski, R.G., Zhai, B., Mudge, T., Blaauw, D., Sylvester, D.: An energy efficient parallel architecture using near threshold operation. In: 16th International Conference on Parallel Architecture and Compilation Techniques, PACT 2007, pp. 175–188 (2007)

    Google Scholar 

  8. Heinzelman, W.R., Sinha, A., Wang, A., Chandrakasan, A.P.: Energy-scalable algorithms and protocols for wireless microsensornetworks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2000. Proceedings, Istanbul, Turkey, vol. 6, pp. 3722–3725 (2000)

    Google Scholar 

  9. Jayakumar, N., Khatri, S.P.: A variation tolerant subthreshold design approach. In: DAC 2005: Proceedings of the 42nd annual conference on Design automation, pp. 716–719. ACM Press, New York (2005)

    Google Scholar 

  10. Kao, J., Narendra, S., Chandrakasan, A.: Subthreshold leakage modeling and reduction techniques. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517. Springer, Heidelberg (2002)

    Google Scholar 

  11. Kim, C.H.I., Soeleman, H., Roy, K.: Ultra-low-power DLMS adaptive filter for hearing aid applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11(6), 1058–1067 (2003)

    Article  Google Scholar 

  12. Kim, T.-H., Eom, H., Keane, J., Kim, C.: Utilizing reverse short channel effect for optimal subthreshold circuit design. In: ISLPED 2006: Proceedings of the 2006 international symposium on Low power electronics and design, pp. 127–130. ACM Press, New York (2006)

    Google Scholar 

  13. Loan, C.V.: Computational frameworks for the fast Fourier transform. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  14. Meindl, J.D., Davis, J.A.: The fundamental limit on binary switching energy for terascale integration (TSI). In: IEEE JSSCC, vol. 35 (February 2002)

    Google Scholar 

  15. Nazhandali, L., Zhai, B., Olson, J., Reeves, A., Minuth, M., Helfand, R., Pant, S., Austin, T., Blaauw, D.: Energy optimization of subthreshold-voltage sensor network processors. SIGARCH Comput. Archit. News 33(2), 197–207 (2005)

    Article  Google Scholar 

  16. Pirsch, P.: Architectures for Digital Signal Processing. Wiley, West Sussex (1998)

    Google Scholar 

  17. Raychowdhury, A., Paul, B., Bhunia, S., Roy, K.: Computing with subthreshold leakage: device/circuit/architecture co-design for ultralow-power subthreshold operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13( 11), 1213–1224 (2005)

    Article  Google Scholar 

  18. Sze, V., Blazquez, R., Bhardwaj, M., Chandrakasan, A.: An energy efficient sub-threshold baseband processor architecture for pulsed ultra-wideband communications. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006. Proceedings, Toulouse, vol. 3 (2006)

    Google Scholar 

  19. Wang, A., Chandrakasan, A.: A 180-mv subthreshold FFT processor using a minimum energy design methodology. IEEE Journal of Solid-State Circuits 40(1), 310–319 (2005)

    Article  Google Scholar 

  20. Yamaoka, M., Maeda, N., Shinozaki, Y., Shimazaki, Y., Nii, K., Shimada, S., Yanagisawa, K., Kawahara, T.: Low-power embedded SRAM modules with expanded margins for writing. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pp. 480–611 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henry, M.B., Nazhandali, L. (2009). Hybrid Super/Subthreshold Design of a Low Power Scalable-Throughput FFT Architecture. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds) High Performance Embedded Architectures and Compilers. HiPEAC 2009. Lecture Notes in Computer Science, vol 5409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92990-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92990-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92989-5

  • Online ISBN: 978-3-540-92990-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics