Skip to main content

Cellular Automata Dynamical Systems

  • Reference work entry
Handbook of Natural Computing

Abstract

We present recent studies on cellular automata (CAs) viewed as discrete dynamical systems. In the first part, we illustrate the relations between two important notions: subshift attractors and signal subshifts, measure attractors and particle weight functions. The second part of the chapter considers some operations on the space of one-dimensional CA configurations, namely, shifting and lifting, showing that they conserve many dynamical properties while reducing complexity. The final part reports recent investigations on two-dimensional CA. In particular, we report a construction (slicing construction) that allows us to see a two-dimensional CA as a one-dimensional one and to lift some one-dimensional results to the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerbi L, Dennunzio A, Formenti E (2007) Shifting and lifting of cellular automata. In: Third conference on computability in Europe (CiE 2007), Lecture notes in computer science, vol 4497. Springer, Siena, Italy, pp 1–10

    Google Scholar 

  • Acerbi L, Dennunzio A, Formenti E (2009) Conservation of some dynamical properties for operations on cellular automata. Theor Comput Sci 410(38–40):3685–3693. http://dx.doi.org/10.1016/j.tcs.2009.05.004; http://dblp.uni-trier.de

    Google Scholar 

  • Akin E (1991) The general topology of dynamical systems. American Mathematical Society, Providence, RI

    Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardi V, Durand B, Formenti E, Kari J (2005) A new dimension sensitive property for cellular automata. Theor Comput Sci 345:235–247

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Isr J Math 99:149–174

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Tisseur P (2000) Some properties of cellular automata with equicontinuity points. Ann Inst Henri Poincaré, Probabilité et Statistiques 36:569–582

    Article  MathSciNet  MATH  Google Scholar 

  • Boyle M, Kitchens B (1999) Periodic points for cellular automata. Indagat Math 10:483–493

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comput Sci 244:219–241

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inf 52:39–80

    MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comput Sci 325:249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Formenti E, Provillard J (2009) Non-uniform cellular automata. In: Horia Dediu A, Armand-Mihai Ionescu, Martín-Vide C (eds) Proceedings of third international conference on language and automata theory and applications (LATA 2009), 2–8 April 2009. Lecture notes in computer science. Springer, vol 5457, pp 302–313. http://dx.doi.org/10.1007/978-3-642-00982-2_26; conf/lata/2009; http://dblp.uni-trier.de; http://dx.doi.org/10.1007/978-3-642-00982-2; http://dblp.uni-trier.de doi:978-3-642-00981-5

  • Cervelle J, Dennunzio A, Formenti E (2008) Chaotic behavior of cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Berlin, Germany

    Google Scholar 

  • Chaudhuri P, Chowdhury D, Nandi S, Chattopadhyay S (1997) Additive cellular automata theory and applications, vol 1. IEEE Press, Mountain View, CA

    MATH  Google Scholar 

  • Chopard B (2012) Cellular automata and lattice Boltzmann modeling of physical systems. Handbook of natural computing. Springer, Heidelberg, Germany

    Google Scholar 

  • de Sá PG, Maes C (1992) The Gacs-Kurdyumov-Levin automaton revisited. J Stat Phys 67(3/4):507–522

    Article  MATH  Google Scholar 

  • Dennunzio A, Formenti E (2008) Decidable properties of 2D cellular automata. In: Twelfth conference on developments in language theory (DLT 2008), Lecture notes in computer science, vol 5257. Springer, New York, pp 264–275

    Google Scholar 

  • Dennunzio A, Formenti E (2009) 2D cellular automata: new constructions and dynamics, 410(38–40):3685–3693

    Google Scholar 

  • Dennunzio A, Guillon P, Masson B (2008) Stable dynamics of sand automata. In: Fifth IFIP conference on theoretical computer science. TCS 2008, Milan, Italy, September, 8–10, 2008, vol 273, IFIP, Int. Fed. Inf. Process. Springer, Heidelberg, Germany, pp 157–179

    Google Scholar 

  • Dennunzio A, Di Lena P, Formenti E, Margara L (2009a) On the directional dynamics of additive cellular automata. Theor Comput Sci 410(47–49):4823–4833. http://dx.doi.org/10.1016/j.tcs.2009.06.023; http://dblp.uni-trier.de

    Google Scholar 

  • Dennunzio A, Formenti E, Weiss M (2009b) 2D cellular automata: expansivity and decidability issues. CoRR, abs/0906.0857 http://arxiv.org/abs/0906.0857; http://dblp.uni-trier.de

  • Dennunzio A, Guillon P, Masson B (2009c) Sand automata as cellular automata. Theor Comput Sci 410(38–40):3962–3974. http://dx.doi.org/10.1016/j.tcs.2009.06.016; http://dblp.uni-trier.de

    Google Scholar 

  • Di Lena P (2006) Decidable properties for regular cellular automata. In: Fourth IFIP conference on theoretical computer science. TCS 2006, Santiago, Chile, August, 23–24, 2006, IFIP, Int. Fed. Inf. Process. vol 209. Springer, pp 185–196

    Google Scholar 

  • Di Lena P, Margara L (2008) Computational complexity of dynamical systems: the case of cellular automata. Inf Comput 206:1104–1116

    Article  MATH  Google Scholar 

  • Di Lena P, Margara L (2009) Undecidable properties of limit set dynamics of cellular automata. In: Albers S, Marion J-Y (eds) Proceedings of 26th international symposium on theoretical aspects of computer science (STACS 2009), 26–28 February 2009, Freiburg, Germany, vol 3. pp 337–347. http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1819; conf/stacs/2009; http://dblp.uni-trier.de

    Google Scholar 

  • Durand B (1993) Global properties of 2D cellular automata: some complexity results. In: MFCS, Lecture notes in computer science, vol 711. Springer, Berlin, Germany, pp 433–441

    Google Scholar 

  • Durand B (1998) Global properties of cellular automata. In: Goles E, Martinez S (eds) Cellular automata and complex systems. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Farina F, Dennunzio A (2008) A predator-prey cellular automaton with parasitic interactions and environmental effects. Fundam Inf 83:337–353

    MathSciNet  MATH  Google Scholar 

  • Formenti E, Grange A (2003) Number conserving cellular automata II: dynamics. Theor Comput Sci 304(1–3):269–290

    Article  MathSciNet  MATH  Google Scholar 

  • Formenti E, Kůrka P (2007) Subshift attractors of cellular automata. Nonlinearity 20:105–117

    Article  MathSciNet  MATH  Google Scholar 

  • Formenti E, Kůrka P (2009) Dynamics of cellular automata in non-compact spaces. In: Robert A. Meyers (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany, pp 2232–2242. http://dx.doi.org/10.1007/978-0-387-30440-3_138; reference/complexity/2009; http://dblp.uni-trier.de

    Google Scholar 

  • Formenti E, Kůrka P, Zahradnik O (2010) A search algorithm for subshift attractors of cellular automata. Theory Comput Syst 46(3):479–498. http://dx.doi.org/10.1007/s00224-009-9230-6; http://dblp.uni-trier.de

    Google Scholar 

  • Gacs P (2001) Reliable cellular automata with self-organization. J Stat Phys 103(1/2):45–267

    Article  MathSciNet  MATH  Google Scholar 

  • Gacs P, Kurdyumov GL, Levin LA (1978) One-dimensional uniform arrays that wash out finite islands. Peredachi Informatiki 14:92–98

    Google Scholar 

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley M (1990) Attractors in cellular automata. Ergod Th Dynam Syst 10:131–140

    MathSciNet  MATH  Google Scholar 

  • Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48:149–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (2008) Tiling problem and undecidability in cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany

    Google Scholar 

  • Kitchens BP (1998) Symbolic dynamics. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  • Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergod Th Dynam Syst 17:417–433

    Article  MATH  Google Scholar 

  • Kůrka P (2003a) Cellular automata with vanishing particles. Fundam Inf 58:1–19

    Google Scholar 

  • Kůrka P (2003b) Topological and symbolic dynamics, Cours spécialisés, vol 11. Société Mathématique de France, Paris

    Google Scholar 

  • Kůrka P (2005) On the measure attractor of a cellular automaton. Discrete Continuous Dyn Syst 2005 (suppl):524–535

    Google Scholar 

  • Kůrka P (2007) Cellular automata with infinite number of subshift attractors. Complex Syst 17(3):219–230

    Google Scholar 

  • Kůrka P (2008) Topological dynamics of one-dimensional cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany

    Google Scholar 

  • Kůrka P, Maass A (2000) Limit sets of cellular automata associated to probability measures. J Stat Phys 100(5/6):1031–1047

    Article  MATH  Google Scholar 

  • Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Maruoka A, Kimura M (1976) Conditions for injectivity of global maps for tessellation automata. Inf Control 32:158–162

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75:361–391

    Article  MATH  Google Scholar 

  • Moore EF (1962) Machine models of self-reproduction. Proc Symp Appl Math 14:13–33

    Google Scholar 

  • Myhill J (1963) The converse to Moore’s Garden-of-Eden theorem. Proc Am Math Soc 14:685–686

    MathSciNet  MATH  Google Scholar 

  • Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift, Memoires of the American Mathematical Society, vol 114. American Mathematical Society, Providence, RI

    Google Scholar 

  • Pivato M (2008) The ergodic theory of cellular automata. In: Meyers B (ed) Mathematical basis of cellular automata, Encyclopedia of complexity and system science. Springer, Heidelberg, Germany

    Google Scholar 

  • Sablik M (2008) Directional dynamics for cellular automata: a sensitivity to the initial conditions approach. Theor Comput Sci 400:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indagat Math 4:203–210

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA, Afraimovich VS (1992) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dyn 1:91–98

    MathSciNet  Google Scholar 

  • Theyssier G, Sablik M (2008) Topological dynamics of 2D cellular automata. In: Computability in Europe (CIE’08), Lecture notes in computer science, vol 5028, pp 523–532

    Google Scholar 

  • Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Acknowledgments

The research was supported by the Research Program CTS MSM 0021620845, by the Interlink/MIUR project “Cellular Automata: Topological Properties, Chaos and Associated Formal Languages,” by the ANR Blanc “Projet Sycomore” and by the PRIN/MIUR project “Mathematical aspects and forthcoming applications of automata and formal languages.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dennunzio, A., Formenti, E., Kůrka, P. (2012). Cellular Automata Dynamical Systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_2

Download citation

Publish with us

Policies and ethics