Skip to main content

Femtosecond Polarization Beats

  • Chapter
Multi-Wave Mixing Processes
  • 553 Accesses

Abstract

When two or more transition pathways exist in multi-level systems excited by multiple laser beams, the generated wave-mixing signals, if arranged appropriately in phase-matching conditions and spatial configurations, can have the same frequency and propagate in the same direction. Therefore, the total detected signal, proportional to the total polarization, will have interference terms determined by the relative time delay between different transition pathways. The beating signal in the total polarization (which we refer to as polarization beats) can have a very fast time scale giving by the energy difference between different resonant transition frequencies. In this chapter, we describe how the different order of coherence functions of laser fields can affect the detected polarization beat. Different stochastic models for the laser fields under different conditions are discussed. Experimental results in multilevel atomic systems are presented to illustrate the concept of polarization beats in femtosecond time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Debeer D, Van Wagenen L G, Beach R, et al. Ultrafast modulation spectroscopy. Phys. Rev. Lett. 1986, 56: 1128–1131.

    Article  ADS  Google Scholar 

  2. Fu P M, Yu Z H, Mi X, et al. Doppler-free ultrafast modulation spectroscopy with phase-conjugation geometry. Phys. Rev. A, 1994, 50: 698–708.

    Article  ADS  Google Scholar 

  3. Fu P M, Mi X, Yu Z H, et al. Ultrafast modulation spectroscopy in a cascade three-level system. Phys. Rev. A, 1995, 52: 4867–4870.

    Article  ADS  Google Scholar 

  4. Beach R, Debeer D, Hartmann S R. Time-delayed 4-wave mixing using intense incoherent-light. Phys. Rev. A, 1985, 32: 3467–3474.

    Article  ADS  Google Scholar 

  5. Mi X, Yu Z H, Jiang Q, et al. Time-delayed laser-induced double gratings with broadband lights. Opt. Common., 1995, 116: 443–448.

    Article  ADS  Google Scholar 

  6. Kirkwood J C, Ulness D J, Albrecht A C. Electronically nonresonant coherent Raman scattering using incoherent light: Two Brownian oscillator approaches. J. Chem. Phys., 1998, 108: 9425–9435.

    Article  ADS  Google Scholar 

  7. Mossberg T W, Kachru R, Hartmann S R, et al. Echoes in gaseous media: a generalized theory of rephasing phenomena. Phys. Rev. A, 1979, 20: 1976–1996.

    Article  ADS  Google Scholar 

  8. Picinbono B, Boileau E. Higher-order coherence functions of optical field and phase fluctuations. J. Opt. Soc. Am., 1968, 58: 784.

    Article  ADS  Google Scholar 

  9. Morita N, Yajima T. Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light. Phys. Rev. A, 1984, 30: 2525–2536.

    Article  ADS  Google Scholar 

  10. Mitsunaga M, Brewer R G. Generalized perturbation-theory of coherent optical-emission. Phys. Rev. A, 1985, 32: 1605–1603.

    Article  ADS  Google Scholar 

  11. Zhang Y P, Sun L Q, Tang T T, et al. Effects of field correlation on polarization beats. Phys. Rev. A, 2000, 61: 053819.

    Article  ADS  Google Scholar 

  12. Do B, Cha J W, Elliott D S, et al. Phase-conjugate four-wave mixing with partially coherent laser fields. Phys. Rev. A, 1999, 60: 508–517.

    Article  ADS  Google Scholar 

  13. Anderson M H, Vemuri G, Cooper J, et al. Experimental study of absorption and gain by two-level atoms in a time-delayed non-Markovian optical field. Phys. Rev. A, 1993, 47: 3202–3209.

    Article  ADS  Google Scholar 

  14. Chen C, Elliott D S, Hamilton M W. Two-photon absorption from the real Gaussian field. Phys. Rev. Lett., 1992, 68: 3531–3534.

    Article  ADS  Google Scholar 

  15. Agarwal G S. Nonlinear spectroscopy with cross-correlated chaotic fields. Phys. Rev. A, 1988, 37: 4741–4746.

    Article  ADS  Google Scholar 

  16. Agarwal G S, Kunasz C V. 4-wave mixing in stochastic fields-fluctuation-induced resonances. Phys. Rev. A, 1983, 27: 996–1012.

    Article  ADS  Google Scholar 

  17. Mi X, Yu Z H, Jiang Q, et al. Four-level ultrafast modulation spectroscopy. Opt. Common., 1998, 152: 361–364.

    Article  ADS  Google Scholar 

  18. Asaka S, Nakatsuka H, Fujiwara M, et al. Accumulated photon echoes with incoherent light in Nd3+-doped silicate glass. Phys. Rev. A, 1984, 29: 2286–2289.

    Article  ADS  Google Scholar 

  19. Mi X, Yu Z H, Jiang Q, et al. Time-delayed laser-induced double gratings. J. Opt. Soc. Am. B, 1993, 10: 725–732.

    Article  ADS  Google Scholar 

  20. Zhang Y P, Lu K Q, Li C S, et al. Correlation effects of chaotic and phase-diffusion fields on polarization beats in a V-type three-level system. J. Mod. Opt., 2001, 48: 549–564.

    ADS  Google Scholar 

  21. Ryan R E, Bergeman T H. Hanle effect in nonmonochromatic laser-light. Phys. Rev. A, 1991, 43: 6142–6155.

    Article  ADS  Google Scholar 

  22. Walser R, Ritsch H, Zoller P, et al. Laser-niose-induced population fluctuations in 2-level systems — complex and real gaussian driving fields. Phys. Rev. A, 1992, 45: 468–476.

    Article  ADS  Google Scholar 

  23. Ryan R E, Westling L A, Blumel R, et al. 2-Photon spectroscopy: a technique for characterizing diode-laser noise. Phys. Rev. A, 1995, 52: 3157–3169.

    Article  ADS  Google Scholar 

  24. Georges A T. Resonance fluorescence in markovian stochastic fields. Phys. Rev. A, 1980, 21: 2034–2049.

    Article  ADS  MathSciNet  Google Scholar 

  25. Bratfalean R, Ewart P. Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields. Phys. Rev. A, 1997, 56, 2267–2279.

    Article  ADS  Google Scholar 

  26. Ulness D J, Albrecht A C. Four-wave mixing in a Bloch two-level system with incoherent laser light having a Lorentzian spectral density: analytic solution and a diagrammatic approach. Phys. Rev. A, 1996, 53: 1081–1095.

    Article  ADS  Google Scholar 

  27. Ulness D J, Albrecht A C. Theory of time resolved coherent Raman scattering with spectrally tailored noisy light. J. Raman Spectrosc., 1997, 28: 571–578.

    Article  ADS  Google Scholar 

  28. Demott D C, Ulness D J, Albrecht A C. Femtosecond temporal probes using spectrally tailored noisy quasi-cw laser light. Phys. Rev. A, 1997, 55: 761–771.

    Article  ADS  Google Scholar 

  29. Ulness D J, Kirkwood J C, Albrecht A C. Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes. J. Chem. Phys., 1998, 108: 3897–3902.

    Article  ADS  Google Scholar 

  30. Kirkwood J C, Albrecht A C, Ulness D J, et al. Coherent Raman scattering with incoherent light for a multiply resonant mixture: a factorized time correlator diagram analysis. Phys. Rev. A, 1998, 58: 4910–4925.

    Article  ADS  Google Scholar 

  31. Kirkwood J C, Albrecht A C, Ulness D J. Fifthorder nonlinear Raman processes in molecular liquids using quasi-cw noisy light. J. Chem. Phys., 1999, 111: 253–271.

    Article  ADS  Google Scholar 

  32. Kirkwood J C, Albrecht A C. Down-conversion of electronic frequencies and their dephasing dynamics: interferometric four-wave-mixing spectroscopy with broadband light. Phys. Rev. A, 2000, 61: 033802.

    Article  ADS  Google Scholar 

  33. Ma H, De Araujo C B. Interference between 3rd-order and 5th-order polarizations in semiconductor-doped glasses. Phys. Rev. Lett., 1993, 71: 3649–3652.

    Article  ADS  Google Scholar 

  34. Ma H, Acioli L H, Gomes A S L, et al. Method to determine the phase dispersion of the 3rd-order susceptibility. Opt. Lett., 1991, 16: 630–632.

    Article  ADS  Google Scholar 

  35. Zhang Y P, De Araujo C B, Eyler E E. Higher-order correlation on polarization beats in Markovian stochastic fields. Phys. Rev. A, 2001, 63: 043802.

    Article  ADS  Google Scholar 

  36. Golub J E, Mossberg T W. Studies of picosecond collisional dephasing in atomic sodium vapor using broad-bandwidth transient 4-wave-mixing. J. Opt. Soc. Am. B, 1986, 3: 554–559.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Femtosecond Polarization Beats. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_2

Download citation

Publish with us

Policies and ethics