Skip to main content

A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5330))

Abstract

First-order logic modulo the theory of integer arithmetic is the basis for reasoning in many areas, including deductive software verification and software model checking. While satisfiability checking for ground formulae in this logic is well understood, it is still an open question how the general case of quantified formulae can be handled in an efficient and systematic way. As a possible answer, we introduce a sequent calculus that combines ideas from free-variable constraint tableaux with the Omega quantifier elimination procedure. The calculus is complete for theorems of first-order logic (without functions, but with arbitrary uninterpreted predicates), can decide Presburger arithmetic, and is complete for a substantial fragment of the combination of both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 545–560. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: Proceedings, 1991 ACM/IEEE conference on Supercomputing, pp. 4–13. ACM, New York (1991)

    Chapter  Google Scholar 

  3. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Sprawozdanie z I Kongresu metematyków slowiańskich, Warszawa, Warsaw, Poland, vol. 1929, pp. 92–101, 395 (1930)

    Google Scholar 

  4. Rümmer, P.: Calculi for Program Incorrectness and Arithmetic. PhD thesis, Chalmers University of Technology (to appear, 2008)

    Google Scholar 

  5. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1996)

    Book  MATH  Google Scholar 

  6. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22, 465–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumgartner, P., Fuchs, A., Tinelli, C.: MELIA – model evolution with linear integer arithmetic constraints (to appear, 2008)

    Google Scholar 

  8. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample generation. In: Beckert, B. (ed.) Proceedings, 4th International Verification Workshop. CEUR, vol. 259 (2007), http://ceur-ws.org/

  9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  10. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53, 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 33–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41, 143–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated Reasoning 1, 333–355 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bürckert, H.J.: A resolution principle for clauses with constraints. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 178–192. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  15. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rümmer, P. (2008). A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics