Skip to main content

An Elementary Optical Gate for Expanding Symmetrically Shared Entanglement

  • Conference paper
Book cover Theory of Quantum Computation, Communication, and Cryptography (TQC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5106))

Included in the following conference series:

  • 797 Accesses

Abstract

We introduce an elementary optical gate based on post-selection strategy that enables not only to prepare polarization entangled W state, but also to grow this into a large-scale multi-photon W state. The gate is composed of a pair of 50:50 beamsplitters and a phase shifter, and it requires a two-photon ancillary state. When the input is a photon from an n-photon W state, the gate produces an (n + 2)-photon W state for post-selected events. Moreover, we show that this gate can be used to prepare and expand GHZ states by a simple modification of the ancillary state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett.  70, 1895 (1993)

    Google Scholar 

  2. Ekert, A.K.: Phys. Rev. Lett.  67, 661 (1991)

    Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge university Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Phys. Rev. Lett. 92, 107901 (2004)

    Google Scholar 

  5. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Phys. Rev. Lett. 98, 020503 (2007)

    Google Scholar 

  6. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Phys. Rev. Lett.  98, 063604 (2007)

    Google Scholar 

  7. Lu, C.-Y., Zhou, X.-Q., Gühne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebel, A., Yang, T., Pan, J.-W.: Nature Physics (London)  3, 91 (2007)

    Google Scholar 

  8. Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A. 62, 062314 (2000)

    Google Scholar 

  9. Briegel, H.J., Raussendorf, R.: Phys. Rev. Lett. 86, 910 (2001)

    Google Scholar 

  10. Koashi, M., Bužek, V., Imoto, N.: Phys. Rev. A.  62, 050302(R) (2000)

    Google Scholar 

  11. Dür, W.: Phys. Rev. A. 63, 020303(R) (2001)

    Google Scholar 

  12. Raussendorf, R., Browne, D.E., Briegel, H.J.: Phys. Rev. A. 68, 022312 (2003)

    Article  Google Scholar 

  13. Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Bregel, H.J., Pan, J.-W.: Nature (London).  430, 54 (2004)

    Google Scholar 

  14. Hillery, M., Bužek, V., Berthiaume, A.: Phys. Rev. A.  59, 1829 (1999)

    Google Scholar 

  15. Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Phys. Rev. A.  69, 052307 (2004)

    Google Scholar 

  16. Kempe, J.: Phys. Rev. A.  60, 910 (1999)

    Google Scholar 

  17. D’Hondt, E., Panangaden, P.: Quant. Inf. and Comp.  6(2), 173 (2005)

    Google Scholar 

  18. Okubo, Y., Wang, X.-.B., Jiang, Y.-.K., Tani, S., Tomita, A.: quant-ph/0709.4314v2 (2007)

    Google Scholar 

  19. Joo, J., Lee, J., Jang, J., Park, Y.-J.: quant-ph/0204003 (2002)

    Google Scholar 

  20. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Phys. Rev. A. 59, 156 (1999)

    Article  Google Scholar 

  21. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Phys. Rev. A. 66, 064301 (2002)

    Article  Google Scholar 

  22. Zeilinger, A., Horne, M.A., Weinfurter, H., zukowski, M.: Phys. Rev. Lett.  78, 3031 (1997)

    Google Scholar 

  23. Rarity, J.G., Tapster, P.R.: Phys. Rev. A.  59, R35 (1999)

    Google Scholar 

  24. Zou, X., Pahlke, K., Mathis, W.: Phys. Rev. A.  66, 044302 (2002)

    Google Scholar 

  25. Li, Y., Kobayashi, T.: Phys. Rev. A. 70, 014301 (2004)

    Article  Google Scholar 

  26. Shi, B.-S., Tomita, A.: J. Mod. Opt.  52, 755 (2005)

    Google Scholar 

  27. Lim, Y.L., Beige, A.: Phys. Rev. A. 71, 062311 (2005)

    Article  Google Scholar 

  28. Tokunaga, Y., Yamamoto, T., Koashi, M., Imoto, N.: Phys. Rev. A. 71, 030301(R) (2005)

    Article  Google Scholar 

  29. Walther, P., Aspelmeyer, M., Zeilinger, A.: Phys. Rev. A. 75, 012313 (2007)

    Article  Google Scholar 

  30. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H.W., Zeilinger, A.: Phys. Rev. Lett.  82, 1314 (1999)

    Google Scholar 

  31. Resch, K.J., Walther, P., Zeilinger, A.: Phys. Rev. Lett. 94, 070402 (2005)

    Article  Google Scholar 

  32. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Nature (London)  434, 169 (2005)

    Google Scholar 

  33. Kiesel, N., schmid, C., Weber, U., Tóth, G., Gühne, O., Ursin, R., Weinfurter, H.: Phys. Rev. Lett.  95, 210502 (2005)

    Google Scholar 

  34. Kiesel, N., Bourennane, M., Kurtsiefer, C., Laskowski, W., Zukowski, M.: J. Mod. Opt.  50, 1131 (2003)

    Google Scholar 

  35. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Phys. Rev. Lett.  92, 077901 (2004)

    Google Scholar 

  36. Mikami, H., Li, Y., Fukuoka, K., Kobayashi, T.: Phys. Rev. Lett. 95, 150404 (2005)

    Article  Google Scholar 

  37. Resch, K.J., Walther, P., Zeilinger, A.: Phys. Rev. Lett. 94, 240501 (2005)

    Article  Google Scholar 

  38. Lu, C.-Y., Zhou, X.-Q., Gühne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebe, A., Yang, T., Pan, J.-W.: Nature Physics.  3, 91 (2007)

    Google Scholar 

  39. Häffner, H., et al.: Nature (London)  438, 643 (2005)

    Google Scholar 

  40. Leibfried, D., et al.: Nature (London)  438, 639 (2005)

    Google Scholar 

  41. Teklemariam, G., et al.: Phys. Rev. A.  66, 012309 (2002)

    Google Scholar 

  42. Özdemir, Ş.K., Miranowicz, A., Koashi, M., Imoto, N.: Phys. Rev. A. 64, 063818 (2001)

    Article  Google Scholar 

  43. Yamamoto, T., Koashi, M., Imoto, N.: Phys. Rev. A. 64, 012304 (2001)

    Article  Google Scholar 

  44. Özdemir, Ş.K., Miranowicz, A., Koashi, M., Imoto, N.: Phys. Rev. A. 66, 053809 (2002)

    Article  Google Scholar 

  45. Yamamoto, T., Koashi, M., Özdemir, Ş.K., Imoto, N.: Nature (London)  421, 343 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N. (2008). An Elementary Optical Gate for Expanding Symmetrically Shared Entanglement. In: Kawano, Y., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2008. Lecture Notes in Computer Science, vol 5106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89304-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89304-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89303-5

  • Online ISBN: 978-3-540-89304-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics