Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 22))

Abstract

Angiogenesis, the formation of new capillaries from pre-existing vessels, plays a critical role during bone regeneration and repair. In addition to an appropriate mechanical environment, sufficient supply of oxygen and nutrients is critical for bone formation.

Mechano-biological models have been previously used to predict the time course of the differentiation process with the mechanical environment as the only regulator of cell activity. Here we propose a mechano-biological model for tissue differentiation where cell activity is regulated by both the local mechanical environment and the local vascularity. Results show a significant effect of the morphology of the new capillary network on bone formation and heterogeneous distributions of cells similar to those seen in histological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter, D. R., P. R. Blenman, G. S. Beaupre. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J. Orthop. Res. 7, 398–407, 1988.

    Google Scholar 

  2. Claes, L. E., C. A. Heigele. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomechanics 32, 255–266, 1999.

    Article  Google Scholar 

  3. Prendergast, P.J., R. Huiskes, K. Søballe. Biophysical stimuli on cells during tissue differentiation at implants interfaces. J. Biomechanics 30, 539–548, 1997.

    Article  Google Scholar 

  4. Lacroix, D., P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomechanics 35, 1163–71, 2002.

    Article  Google Scholar 

  5. Kelly, D. J., P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomechanics 38, 1413–1422, 2005.

    Article  Google Scholar 

  6. Isaksson, H., O. Comas, C. C. van Donkelaar, J. Mediavilla, W. Wilson, R. Huiskes, K. Ito. Bone regeneration during distraction osteogenesis: Mechano-regulation by shear strain and fluid velocity. Journal of Biomechanics 40, 2002–2011, 2006.

    Article  Google Scholar 

  7. Byrne, D. P., D. Lacroix, J. A. Planell, D. J. Kelly, P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554, 2007.

    Article  Google Scholar 

  8. Geris, L., A. Andreykiv, H. Van Oosterwyck, J. Vander Stolen, F. van Keulen, J. Duyckc, I. Naert. Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. J. Biomech. 37, 763–769, 2004.

    Article  Google Scholar 

  9. Hirao, M., N. Tamai, N. Tsumaki, H. Yoshikawa, A. Myoui. Oxygen Tension Regulates Chondrocyte Differentiation and Function during Endochondral Ossification. J. Biol. Chem. 281, 31079–31092, 2006.

    Article  Google Scholar 

  10. Hausman, M. R., M. B. Schaffler, R. J. Majesta. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560–564, 2001.

    Article  Google Scholar 

  11. Geris, L., A. Gerisch, J. V. Stolen, R. Weiner, H. V. Oosterwyck. Angiogenesis in bone fracture healing: A bioregulatory model. Journal of Theoretical Biology 251, 137–158, 2007.

    Article  Google Scholar 

  12. Carmeliet, P. and M. K. Jain. Angiogenesis in cancer and other diseases. Nature, 407, 249–257, 2000.

    Article  Google Scholar 

  13. Pérez M., P. J. Prendergast. Random-walk model of cell-dispersal included in mechanobiological simulation of tissue differentiation. J. Biomechanics 40, 2244–2253, 2007.

    Article  Google Scholar 

  14. Gerber, H. P., T. H. Vu, A. M. Ryan, J. Kowalski, Z. Werb, N. Ferrara. VEGF couples hypertrophic cartilage remodelling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628, 1999.

    Article  Google Scholar 

  15. Stokes, C. L., D. A. Lauffenburger. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430, 1991.

    Google Scholar 

  16. Kenyon, B. M., E. E. Voest, C. C. Chen, E. Flynn, J. Folkman, R. J. D’Amato. A model of angiogenesis in the mouse cornea. Invest Ophthalmol. Vis. Sci. 37, 1625–1632, 1996.

    Google Scholar 

  17. Claes, L., K. Eckert-Hubner, P. Augat. The effect of mechanical stability on local vascularisation and tissue differentiation in callus healing. J. Orthop. Res. 20, 1099–1105, 2002.

    Article  Google Scholar 

  18. Lu, C., R. Marcucio, T. Miclau. Assessing angiogenesis during fracture healing. Iowas Orthop. J. 26, 17–26, 2006.

    Google Scholar 

  19. Götz, H. E., M. Müller, A. Emmel, U. Holzwarth, R. G. Erben, R. Stangl. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25, 4057–4064, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Checa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Checa, S., Prendergast, P.J. (2009). Capillary network formation during tissue differentiation. A mechano-biological model. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds) 4th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_525

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89208-3_525

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89207-6

  • Online ISBN: 978-3-540-89208-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics