Skip to main content

Functional Unfolded Proteins: How, When, Where, and Why?

  • Chapter
Water and Biomolecules

Part of the book series: Biological and Medical Physics, Biomedical ((BIOMEDICAL))

  • 838 Accesses

Abstract

Recent advances in the sequencing of whole genomes have given fascinating insights into the overall composition of the encoded proteins. Many of the amino acid sequences that have been deduced in this way have highly biased sequences and are predicted to be unfolded. A significant number of these sequences correspond to parts of functional proteins, and in a surprising number of cases, the unstructured regions correspond to the most relevant parts of the protein for function – the actual sites for the binding of activators, repressors, and other ligands. This is particularly true for proteins involved in signaling networks – that is, signal transduction, transcriptional activation, translation, and cell cycle regulation. The intrinsically disordered regions facilitate interactions with multiple binding partners and also provide a means for efficiently dissociating the complex after the signal has been transduced. This article briefly reviews some of the recent experimental evidence from our own and other labs, upon which these conclusions are based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.E. Wright, H.J. Dyson, J. Mol. Biol. 293, 321 (1999)

    Article  PubMed  CAS  Google Scholar 

  2. V.N. Uversky, Protein Sci. 11, 739 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. A.K. Dunker, C.J. Brown, Adv. Protein Chem. 62, 25 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. P. Tompa, Trends Biochem. Sci. 27, 527 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. H.J. Dyson, P.E. Wright, Nat. Rev. Mol. Cell Biol. 6, 197 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. R.B. Russell, T.J. Gibson, FEBS Lett. 582, 1271 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. C. Bösch, A. Bundi, M. Oppliger, K. Wüthrich, Eur. J. Biochem. 91, 209 (1978)

    Article  Google Scholar 

  8. X. He, D. Chow, M.M. Martick, K.C. Garcia, Science 293, 1657 (2001)

    Article  CAS  Google Scholar 

  9. A.J. Daniels, R.J.P. Williams, P.E. Wright, Neuroscience 3, 573 (1978)

    Article  PubMed  CAS  Google Scholar 

  10. R.W. Kriwacki, L. Hengst, L. Tennant, S.I. Reed, P.E. Wright, Proc. Natl. Acad. Sci. USA 93, 11504 (1996)

    Article  PubMed  CAS  Google Scholar 

  11. G.W. Daughdrill, M.S. Chadsey, J.E. Karlinsey, K.T. Hughes, F.W. Dahlquist, Nat. Struct. Biol. 4, 285 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. G.W. Daughdrill, L.J. Hanely, F.W. Dahlquist, Biochemistry 37, 1076 (1998)

    Article  PubMed  CAS  Google Scholar 

  13. I. Radhakrishnan, G.C. Pérez-Alvarado, D. Parker, H.J. Dyson, M.R. Montminy, P. E. Wright, Cell 91, 741 (1997)

    Article  PubMed  CAS  Google Scholar 

  14. I. Radhakrishnan, G.C. Pérez-Alvarado, H.J. Dyson, P.E. Wright, FEBS Lett. 430, 317 (1998)

    Article  PubMed  CAS  Google Scholar 

  15. D. Liu, R. Ishima, K.I. Tong, S. Bagby, T. Kokubo, D.R. Muhandiram, L.E. Kay, Y. Nakatani, M. Ikura, Cell 94, 573 (1998)

    Article  PubMed  CAS  Google Scholar 

  16. P. Romero, Z. Obradovic, C.R. Kissinger, J.E. Villafranca, E. Garner, S. Guilliot, A.K. Dunker, Pac. Symp. Biocomput. 3, 437 (1998)

    Google Scholar 

  17. P. Romero, Z. Obradovic, C.R. Kissinger, J.E. Villafranca, A.K. Dunker, Proc. IEEE Int. Conf. Neural Networks 1997, 90 (1997)

    Google Scholar 

  18. L.M. Iakoucheva, C.J. Brown, J.D. Lawson, Z. Obradovic, A.K. Dunker, J. Mol. Biol. 323, 573 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. N. Abdul-Manan, B. Aghazadeh, G.A. Liu, A. Majumdar, O. Ouerfelli, K.A. Siminovitch, M.K. Rosen, Nature 399, 379 (1999)

    Article  PubMed  CAS  Google Scholar 

  20. A.H. Huber, D.B. Stewart, D.V. Laurents, W.J. Nelson, W.I. Weis, J. Biol. Chem. 276, 12301 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. S.A. Dames, M. Martinez-Yamout, R.N. De Guzman, H.J. Dyson, P.E. Wright, Proc. Natl. Acad. Sci. USA 99, 5271 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. R.N. De Guzman, M. Martinez-Yamout, H.J. Dyson, P.E. Wright, J. Biol. Chem. 279, 3042 (2004)

    Article  PubMed  Google Scholar 

  23. S.J. Demarest, M. Martinez-Yamout, J. Chung, H. Chen, W. Xu, H.J. Dyson, R.M. Evans, P.E. Wright, Nature 415, 549 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. N.K. Goto, T. Zor, M. Martinez-Yamout, H.J. Dyson, P.E. Wright, J. Biol. Chem. 277, 43168 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. P.E. Hershey, S.M. McWhirter, J.D. Gross, G. Wagner, T. Alber, A.B. Sachs, J. Biol. Chem. 274, 21297 (1999)

    Article  PubMed  CAS  Google Scholar 

  26. H.J. Dyson, P.E. Wright, Curr. Opin. Struct. Biol. 12, 54 (2002)

    Article  PubMed  CAS  Google Scholar 

  27. J. Yao, H.J. Dyson, P.E. Wright, FEBS Lett. 419, 285 (1997)

    Article  PubMed  Google Scholar 

  28. K. Sugase, H.J. Dyson, P.E. Wright, Nature 447, 1021 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. K. Gunasekaran, C.J. Tsai, S. Kumar, D. Zanuy, R. Nussinov, Trends Biochem. Sci. 28, 81 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. J.M. Elkins, K.S. Hewitson, L.A. McNeill, J.F. Seibel, I. Schlemminger, C.W. Pugh, P.J. Ratcliffe, C.J. Schofield, J. Biol. Chem. 278, 1802 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. M.D. Jacobs, S.C. Harrison, Cell 95, 749 (1998)

    Article  PubMed  CAS  Google Scholar 

  32. F.E. Chen, D.B. Huang, Y.Q. Chen, G. Ghosh, Nature 391, 410 (1998)

    Article  PubMed  CAS  Google Scholar 

  33. T. Huxford, D.B. Huang, S. Malek, G. Ghosh, Cell 95, 759 (1998)

    Article  PubMed  CAS  Google Scholar 

  34. C.H. Croy, S. Bergqvist, T. Huxford, G. Ghosh, E.A. Komives, Protein Sci. 13, 1767 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. S.M. Truhlar, J.W. Torpey, E.A. Komives, Proc. Natl. Acad. Sci. USA 103, 18951 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. J. Fiaux, E.B. Bertelsen, A.L. Horwich, K. Wuthrich, Nature 418, 207 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. R. Sprangers, L.E. Kay, Nature 445, 618 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Sue et al., J. Mol. Biol. 380, 917 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dyson, H.J., Sue, SC., Wright, P.E. (2009). Functional Unfolded Proteins: How, When, Where, and Why?. In: Kuwajima, K., Goto, Y., Hirata, F., Kataoka, M., Terazima, M. (eds) Water and Biomolecules. Biological and Medical Physics, Biomedical . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88787-4_6

Download citation

Publish with us

Policies and ethics