Skip to main content

The Distribution of Mutational Effects on Fitness in a Simple Circadian Clock

  • Conference paper
Computational Methods in Systems Biology (CMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5307))

Included in the following conference series:

Abstract

The distribution of mutational effects on fitness (DMEF) is of fundamental importance for many questions in biology. Previously, wet-lab experiments and population genetic methods have been used to infer the sizes of effects of mutations. Both approaches have important limitations. Here we propose a new framework for estimating the DMEF by constructing fitness correlates in molecular systems biology models. This new framework can complement the other approaches in estimating small effects on fitness. We present a notation for the various DMEs that can be present in a molecular systems biology model. Then we apply this new framework to a simple circadian clock model and estimate various DMEs in that system. Circadian clocks are responsible for the daily rhythms of activity in a wide range of organisms. Mutations in the corresponding genes can have large effects on fitness by changing survival or fecundity. We define potential fitness correlates, describe methods for automatically measuring them from simulations and implement a simple clock using the Gillespie stochastic simulation algorithm within StochKit. We determine what fraction of examined mutations with small effects on the rates of the reactions involved in this system are advantageous or deleterious for emerging features of the system like a fitness correlate, cycle length and cycle amplitude. We find that the DME can depend on the wild type reference used in its construction. Analyzing many models with our new approach will open up a third source of information about the distribution of mutational effects, one of the fundamental quantities that shape life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eyre-Walker, A., Keightley, P.D.: The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Loewe, L., Charlesworth, B.: Inferring the distribution of mutational effects on fitness in Drosophila. Biology Letters 2, 426–430 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Keightley, P.D., Eyre-Walker, A.: Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177, 2251–2261 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin, G., Lenormand, T.: A general multivariate extension of Fisher’s geometrical model and the distribution of mutation fitness effects across species. Evolution 60, 893–907 (2006)

    Article  PubMed  Google Scholar 

  5. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kitano, H.: A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Disc. 6, 202–210 (2007)

    Article  CAS  Google Scholar 

  7. Brommer, J.E.: The evolution of fitness in life-history theory. Biol. Rev. Camb. Philos. Soc. 75, 377–404 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Stearns, S.C.: The evolution of life histories. Oxford University Press, Oxford (1992)

    Google Scholar 

  9. Rust, M.J., Markson, J.S., Lane, W.S., Fisher, D.S., O’Shea, E.K.: Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panda, S., Hogenesch, J.B., Kay, S.A.: Circadian rhythms from flies to human. Nature 417, 329–335 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Brunner, M., Káldi, K.: Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol. Microbiol. 68(2), 255–262 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Gjuvsland, A.B., Plahte, E., Omholt, S.W.: Threshold-dominated regulation hides genetic variation in gene expression networks. BMC Syst. Biol. 1, 57 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Efron, B., Tibshirani, R.D.: An introduction to the bootstrap. Chapman & Hall, New York (1993)

    Book  Google Scholar 

  14. Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)

    Article  CAS  PubMed  Google Scholar 

  16. Gonze, D., Halloy, J., Goldbeter, A.: Deterministic versus stochastic models for circadian rhythms. J. Biol. Phys. 28, 637–653 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bundschuh, R., Hayot, F., Jayaprakash, C.: Fluctuations and Slow Variables in Genetic Networks. Biophys. J. 84, 1606–1615 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arkin, A.P., Rao, C.V.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 11, 4999–5010 (2003)

    Google Scholar 

  19. Cao, Y., Gillespie, D.T., Petzold, L.: Accelerated Stochastic Simulation of the Stiff Enzyme-Substrate Reaction. J. Chem. Phys. 123(14), 144917–144929 (2005)

    Article  PubMed  Google Scholar 

  20. Cao, Y., Gillespie, D.T., Petzold, L.: Adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126, 224101 (2007)

    Article  PubMed  Google Scholar 

  21. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Bradley, J.T., Thorne, T.: Stochastic Process Algebra models of a Circadian Clock. In: Nicol, D.M., Priami, C., Nielson, H.R., Uhrmacher, A.M. (eds.) Simulation and Verification of Dynamic Systems, Dagstuhl Seminar Proceedings, Dagstuhl, Germany (2006), http://drops.dagstuhl.de/opus/volltexte/2006/705

  23. Stenico, M.: Modelling molecular systems with discrete concentration levels in the context of process algebra PEPA: Stochastic and deterministic interpretations. MSc.Thesis, University of Trento (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loewe, L., Hillston, J. (2008). The Distribution of Mutational Effects on Fitness in a Simple Circadian Clock. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88562-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88561-0

  • Online ISBN: 978-3-540-88562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics