Skip to main content

Perturbations and Stability of Higher-Dimensional Black Holes

  • Chapter
Physics of Black Holes

Part of the book series: Lecture Notes in Physics ((LNP,volume 769))

Abstract

In this article, I explain the gauge-invariant formulation for perturbations of background spacetimes with untwisted homologous Einstein fibres, which include lots of practically important spacetimes such as static black holes, static black branes and rotating black holes in various dimensions. As applications, we discuss the stability of static black holes in higher dimensions and flat black branes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Regge and J. Wheeler, Phys. Rev. 108, 1063–1069 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. F. Zerilli, Phys. Rev. Lett. 24, 737–738 (1970).

    Article  ADS  Google Scholar 

  3. S. Teukolsky, Phys. Rev. Lett. 29, 1114–1118 (1972).

    Article  ADS  Google Scholar 

  4. C. Vishveshwara, Phys. Rev. D 1, 2870–2879 (1970).

    Article  ADS  Google Scholar 

  5. R. Price, Phys. Rev. D 5, 2419–2438 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, New York 1983).

    MATH  Google Scholar 

  7. M. Heusler, Black Hole Uniqueness Theorems (Cambridge University Press, Cambridge 1996).

    MATH  Google Scholar 

  8. R. Emparan, JHEP 03, 064 (2004).

    Google Scholar 

  9. H. Kodama, J. Korean Phys. Soc. 45, S68–76 (2004).

    Google Scholar 

  10. B. Kol, Phys. Rep. C 422, 119–165 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Elvang, R. Emparan and P. Figueras, JHEP 0705, 056 (2007).

    Google Scholar 

  12. S. Hollands and S. Yazadjiev, arXiv:0711.1722 [gr-qc] (2007).

    Google Scholar 

  13. Y. Morisawa, S. Tomizawa and Y. Yasui, arXiv:0710.4600 [hep-th] (2007).

    Google Scholar 

  14. H. Kodama, Prog. Theor. Phys. 112, 249–274 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. R. M. Wald, J. Math. Phys. 20, 1056–1058 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. M. Wald, J. Math. Phys. 21, 218 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Ishibashi and H. Kodama, Prog. Theor. Phys. 110, 901–919 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. H. Kodama and A. Ishibashi, Prog. Theor. Phys. 111, 29–73 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. B. Whiting, J. Math. Phys. 30, 1301–1305 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Heusler, S. Droz and N. Straumann, Phys. Lett. B 271, 61–67 (1991).

    Google Scholar 

  21. M. Heusler, S. Droz and N. Straumann, Phys. Lett. B 285, 21–26 (1992).

    Google Scholar 

  22. M. Heusler, N. Straumann and Z. -H. Zhou, Helv. Phys. Acta 66, 614–632 (1993).

    MATH  ADS  MathSciNet  Google Scholar 

  23. N. Straumann and Z. -H. Zhou, Phys. Lett. B 237, 353–356 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. Zhou, Z. -H. and N. Straumann, Nucl. Phys. B 360, 180–96 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  25. V. Cardoso, O. Dias and S. Yoshida, Phys. Rev. D 74, 044008 (2006).

    Article  ADS  Google Scholar 

  26. V. Cardoso and J. P. S. Lemos, Phys. Rev. D 64, 084017 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Hawking and H. Reall, Phys. Rev. D 61, 024014 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Cardoso and O. Dias, Phys. Rev. D 70, 084011 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Konoplya and A. Zhidenko, Nucl. Phys. B 777, 182–202 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. R. Gregory and R. Laflamme, Nucl. Phys. B 428, 399–434 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. T. Hirayama, G. Kang and Y. Lee, Phys. Rev. D 67, 024007 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837–2840 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. R. Gregory and R. Laflamme, Phys. Rev. D 51, 305–309 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Gregory, Class. Quantum Grav. 17, L125–32 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. T. Hirayama and G. Kang, Phys. Rev. D 64, 064010 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  36. G. Kang, J. Korean Phys. Soc. 45, S86–S89 (2004).

    Google Scholar 

  37. S. Seahra, C. Clarkson and R. Maartens, Phys. Rev. Lett. 94, 121302 (2005).

    Article  ADS  Google Scholar 

  38. H. Kudoh, Phys. Rev. D 73, 104034 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Brihaye, T. Delsate and E. Radu, arXiv: 0710.4034[hep-th] (2007).

    Google Scholar 

  40. H. Kunduri, J. Lucietti and H. Reall, Phys. Rev. D 74, 084021 (2006).

    Google Scholar 

  41. V. Cardoso, O. Dias, J. Lemos and S. Yoshida, Phys. Rev. D 70, 044039 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  42. V. Cardoso and S. Yoshida, JHEP 0507, 009 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Kodama, arXiv:0711.4184 [hep-th] (2007).

    Google Scholar 

  44. O. Dias, Phys. Rev. D 73, 124035 (2006).

    Google Scholar 

  45. T. Harmark, V. Niarchos and N. Obers, hep-th/0701022 (2007).

    Google Scholar 

  46. R. Emparan and R. C. Myers, JHEP 0309, 025 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  47. J. Bardeen, Phys. Rev. D 22, 1882–905 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  48. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1–166 (1984).

    Article  ADS  Google Scholar 

  49. H. Kodama, Prog. Theor. Phys. 71, 946–959 (1984).

    Article  ADS  Google Scholar 

  50. H. Kodama, Prog. Theor. Phys. 73, 674–682 (1985).

    Article  ADS  Google Scholar 

  51. S. Mukohyama, Phys. Lett. B 473, 241 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. H. Kodama, A. Ishibashi and O. Seto, Phys. Rev. D 62, 064022 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701–722 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. K. Murata and J. Soda, arXiv:0710.0221[hep-th] (2007).

    Google Scholar 

  55. R. Myers and M. Perry, Ann. Phys. 172, 304–347 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. G. W. Gibbons, H. Lü, D. N. Page and C. N. Pope, J. Geom. Phys. 53, 49–73 (2005).

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kodama, H. (2009). Perturbations and Stability of Higher-Dimensional Black Holes. In: Papantonopoulos, E. (eds) Physics of Black Holes. Lecture Notes in Physics, vol 769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88460-6_11

Download citation

Publish with us

Policies and ethics