Skip to main content

Nichtmaligne Erkrankungen

  • Chapter
  • First Online:
Strahlentherapie
  • 9169 Accesses

Zusammenfassung

Nichtmaligne Erkrankungen weisen zahlreiche Merkmale auf, die berechtigten Anlass zu ihrer Behandlung geben. Sie können invasiv und aggressiv wachsen ohne Metastasen zu setzen wie z.B. beim Desmoid ; sie können kosmetisch entstellend und funktionell sehr störend sein wie beim Keloid oder der endokrinen Orbitopathie; teilweise können sie sogar lebensbedrohlich sein, z. B. beim therapierefraktären Hämangiom der Leber (Kasabach-Merritt-Syndrom ) oder dem juvenilen Angiofibrom im Gesichtsbereich bei Kindern und Jugendlichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

Zu Allgemeine Einführung und Evidenzbasierte Anwendung

  • Broerse JJ, Snijders-Keilholz A, Jansen JTM et al. (1999) Assessment of carcinogenic risk for treatment of Graves’ ophthalmopathy in dependence on age and irradiation geometry. Radiother Oncol 53:205–208

    PubMed  CAS  Google Scholar 

  • Bureau of Radiological Health (1977) A Review of the use of ionizing radiation for the treatment of benign disease, vol 1, pp 1–2. Rockville, MD, US Department of Health, Education and Welfare

    Google Scholar 

  • Hess F (1980) Strahlentherapie gutartiger Erkrankungen. In: Scherer E (Hrsg) Strahlentherapie – Radiologische Onkologie, Springer, Berlin Heidelberg New York Tokio, S 354–369

    Google Scholar 

  • ICRP Publication No. 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, vol 21, 1–3, Pergamon Press, Oxford

    Google Scholar 

  • Jansen JTM, Broerse J, Zoetelief J, Klein C, Seegenschmiedt MH (2001) Assessment of Carcinogenic Risk in the Treatment of Benign Disease of Knee and Shoulder Joint. In: Seegenschmiedt MH, Makoski HB (Hrsg) 15. Kolloquium Radioonkologie/Strahlentherapie, Radiotherapie bei gutartigen Erkrankungen. Diplodocus, Altenberge, pp 13–15

    Google Scholar 

  • Kramer S, Herring DF (1976) The patterns of care study: a nationwide evaluation of the practice of radiation therapy in cancer management in radiation therapy. Int J Radiat Oncol Biol Phys 1:1231–1236

    PubMed  CAS  Google Scholar 

  • Kramer S (1977) The study of the patterns of care in radiation therapy. Cancer 39:780–787

    PubMed  CAS  Google Scholar 

  • Leer JWH, van Houtte P, Davelaar J (1998) Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 48:249–257

    PubMed  CAS  Google Scholar 

  • Makoski HB (1997) Gutartige Erkrankungen (Kapitel 11). In: Sack H, Scherer E (Hrsg) Radiologische Onkologie (3. Aufl). Springer, Berlin Heidelberg New York Tokio, pp 293–311

    Google Scholar 

  • Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  • Order EO, Donaldson SS (eds) (1998) Radiation therapy of benign diseases. 2nd edn. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Makoski HB, Micke O, German Cooperative Group Radiotherapy for Benign Diseases (2001) Benign diseases: Radiation prophylaxis for heterotopic ossification about the hip joint – a multi-center study. Int J Radiat Oncol Biol Phys 51:756–765

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for non-malignant diseases in Germany – Current concepts and future perspectives. Strahlenther Onkol 180:718–730

    PubMed  Google Scholar 

  • Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Oncol 170:1–12

    CAS  Google Scholar 

Zu Strahlenbiologische Voraussetzungen

  • Behrends U, Peter RU, Hintermeier-Knabe R et al. (1994) Ionising radiation induces human intercellular adhesion molecule 1 in vitro. J Invest Dermatol 103:726–730

    PubMed  CAS  Google Scholar 

  • Hildebrandt G, Seed MP, Freemantle CN et al. (1998 a) Effects of low dose ionizing radiation on murine chronic granulomatous tissue. Strahlenther Onkol 174:580–588

    PubMed  CAS  Google Scholar 

  • Hildebrandt G, Seed MP, Freemantle CN et al. (1998 b) Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol 74:367–378

    PubMed  CAS  Google Scholar 

  • Hildebrandt G, Jahns J, Hindemith M et al. (2000) Effects of low dose radiation therapy on adjuvant induced arthritis in rats. Int J Radiat Biol 76:1143–1153

    PubMed  CAS  Google Scholar 

  • Hildebrandt G, Magiorella, Rödel F, Rödel V, Willis D, Trott KR (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78:315–325

    PubMed  CAS  Google Scholar 

  • Hildebrandt G, Radlingmayr A, Rosenthal S et al. (2003) Lowdose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int J Radiat Biol 79:993–1001

    PubMed  CAS  Google Scholar 

  • Hosoi Y, Miyachi H, Matsumoto Y et al. (2001) Induction of interleukin-1beta and interleukin-6mRNA by low doses of ionizing radiation in macrophages. Int J Cancer 96:270–276

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Robbins MEC, Van den Aardweg GJMJ et al. (1993) The modulation of radiation-induced damage to pig skin by essential fatt acids. Brit J Cancer 58:1–7

    Google Scholar 

  • ICRP Publication 60 (1991) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21:1–3. Pergamon Press, Oxford

    Google Scholar 

  • Kern PM, Keilholz L, Forster C et al. (1999) In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependance. Int J Radiat Biol 75:995–1003

    PubMed  CAS  Google Scholar 

  • Kern PM, Keilholz L, Forster C et al. (2000) Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol 54:273–282

    PubMed  CAS  Google Scholar 

  • Magiorella L (1985) The effect of low doses of X-rays on cell adhesion molecule expression in stimulated E.A.hy.926 endothelial cells. J Immunol 135:1119–1125

    Google Scholar 

  • Micke P, Blaukat A, Micke O (2003) Effect of Cobalt-60 irradiation on bradykinin B2 receptor expression on human HF-15 cells. Ex Cli Journal 2:52–57

    Google Scholar 

  • O’Brien-Ladner A, Nelson ME, Kimler BF, Wesselius L (1993) Release of interleukin 1 by human alveolar makrophages after in vitro irradiation. Radiat Res 136:37–41

    PubMed  Google Scholar 

  • Rodemann HP, Bamberg M (1985) Cellular basis of radiationinduced fibrosis. Radiother Oncol 35:83–90

    Google Scholar 

  • Rödel F, Kamprad F, Sauer R, Hildebrandt G (2002) Funktionelle und molekulare Aspekte der anti-inflammatorischen Wirkung niedrig dosierter Radiotherapie. Strahlenther Onkol 178:1–9

    PubMed  Google Scholar 

  • Rödel F, Kley N, Beuscher HU et al. (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78:711–719

    Google Scholar 

  • Rödel F, Schaller U, Schultze-Mosgau S et al. (2004) The induction of TGF-beta(1)-and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther Onkol 180:194–200

    PubMed  Google Scholar 

  • Rubin, P, Soni A, Williams JP (1999) The molecular and cellular basis for the radiation treatment of benign proliferative diseases. Sem Radiat Oncol 9:203–214

    CAS  Google Scholar 

  • Schaue D, Marples B, Trott KR (2002) The effects of low-dose x-irradiation on the oxidative burst in stimulated makrophages. Int J Radiat Biol 78:567–576

    PubMed  CAS  Google Scholar 

  • Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1991) Regulation of tumor necrosis factor gene expression by ionising radiation in human myeloid leikemia cells and peripheral blood monocytes. J Clin Invest 87:1794–1797

    PubMed  CAS  Google Scholar 

  • Sokoloff N (1898) Röntgenstrahlen gegen Gelenkrheumatismus. Fortschr Röntgenstr 1:209–213

    Google Scholar 

  • Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Oncol 170:1–12

    CAS  Google Scholar 

  • Trott KR, Parker R, Seed MP et al. (1995) The effect of x-rays on experimental arthritis in the rat. Strahlenther Onkol 171:534–538

    PubMed  CAS  Google Scholar 

  • Trott K-R, Kamprad F (1999) Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother Oncol 51:197–203

    PubMed  CAS  Google Scholar 

  • Vieten H (1977) Neurovegetative Wirkungen der Strahlentherapie. Grundlagen und Möglichkeiten der radiologischen Funktionstherapie. Die Reaktion des vegetativen Nervensystems auf ionisierende Strahlen. In: Sturm A, Birkmayer W (Hrsg) Klinische Pathologie des vegetativen Nervensystems. Fischer, Stuttgart New York, S 1531–1547

    Google Scholar 

  • Von Pannewitz G (1970) Degenerative Erkrankungen. In: Zuppinger A, Ruckensteiner E (Hrsg) Handbuch der medizinischen Radiologie. Springer, Berlin Heidelberg New York Tokio, S 96–98

    Google Scholar 

  • Von Wangenheim KH, Petersen HP, Schwenke K (1995) A major component of radiation action: interference with intracellular control of differentiation. Int J Radiat Biol 68:369–388

    PubMed  CAS  Google Scholar 

Zu Meningeom

  • Ciric I, Rosenblatt S (2001) Suprasellar meningiomas. Neurosurg 49:1372–1377

    CAS  Google Scholar 

  • Debus J, Wuendrich M, Pirzkall A et al. (2001) High efficacy of fractionated stereotactic radiotherapy of large skull base meningiomas: Long-term results. J Clin Oncol 19:3547–3553

    PubMed  CAS  Google Scholar 

  • Engenhart R, Kimmig BN, Hover KH et al. (1990) Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 19:1021–1026

    PubMed  CAS  Google Scholar 

  • Goldsmith BJ, Wara WM, Wilson CB, Larson D (1994) Prospective irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967–1990. J Neurosurg 80:195–201

    PubMed  CAS  Google Scholar 

  • Goodwin JW, Crowley J, Eyre HJ et al. (1993) A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: A Southwest Oncology Group Study. J Neurooncol 15:75–77

    PubMed  CAS  Google Scholar 

  • Grunberg S, Weiss M, Spitz I et al. (1991) Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg 74:861–886

    PubMed  CAS  Google Scholar 

  • Gudjonsson O, Blomquist E, Nyberg G et al. (1999) Stereotactic irradiation of skull base meningiomas with high energy protons. Acta Neurochir (Wien) 141:933–940

    Google Scholar 

  • Kondziolka D, Levy EI, Niranjan A, Flickinger JC, Lunsford LD (1999) Long-term outcomes after meningioma radiosurgery: Physician and patient perspectives. J Neurosurg 91:44–50

    PubMed  CAS  Google Scholar 

  • Kyritsis AP (1996) Chemotherapy for meningiomas. J Neurooncol 29:269–272

    PubMed  CAS  Google Scholar 

  • Mathiesen T, Lindquist C, Kihlstrom L (1996) Recurrence of cranial base meningiomas. Neurosurg 39:2–7

    CAS  Google Scholar 

  • Milosevic M, Frost PJ, Laperriere NJ, Wong CS, Simpson WJ (1996) Radiotherapy for atypical or malignant intracranial meningioma. Int J Radiat Oncol Biol Phys 34:817–822

    PubMed  CAS  Google Scholar 

  • Muthukumar N, Kondziolka D, Lunsford LD, Flickinger JC (1998) Stereotactic radiosurgery for tentorial meningiomas. Acta Neurochir (Wien) 140:315–320

    Google Scholar 

  • Nutting C, Brada M, Brazil L et al. (1999) Radiotherapy in the treatment of benign meningioma of the skull base. J Neurosurg 90:823–827

    PubMed  CAS  Google Scholar 

  • Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20:22–39

    PubMed  CAS  Google Scholar 

  • Stewart DJ, Dahrouge S, Wee M, Aitken S, Hugenholtz H (1995) Intraarterial cisplatin plus intravenous doxorubicin for inoperable recurrent meningiomas. J Neurooncol 24:189–194

    PubMed  CAS  Google Scholar 

  • Taylor B, Marcus R, Friedman W, Ballinger W, Million R (1988) The meningioma controvery: postoperative radiation therapy. Int J Radiat Oncol Biol Phys 15:299–304

    PubMed  Google Scholar 

  • Vernimmen FJ, Harris JK, Wilson JA, Melvill R, Smit BJ, Slabbert JP (2001) Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 49:99–105

    PubMed  CAS  Google Scholar 

  • Wenkel E, Thornton AF, Finkelstein D et al. (2000) Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys 48:1363–1370

    PubMed  CAS  Google Scholar 

Zu Hypophysenadenom

  • Becker G et al. (2002) Radiation Therapy in the multimodal treatment approach of pituitary adenoma. Strahlenth Onkol 4:173–86

    Google Scholar 

  • Engenhart-Cabilic R et al. (Hrsg) (1998) Leitlinien zur Strahlentherapie von Hypophysenadenomen AG Hypophyse und Hypophysentumore der Deutschen Gesellschaft für Endokrinologie (DGE), der Deutschen Gesellschaft für Radioonkologie (DEGRO), der Deutschen Gesellschaft für Neurochirurgie, der AG Radioonkologie (ARO) und der AG Neuroonkologie (NOA) der Deutschen Krebsgesellschaft

    Google Scholar 

  • Grabenbauer GG et al. (1996) Hormoninaktive Hypophysenadenome: Resultate und Spätfolgen nach Operation und Radiotherapie. Strahlenther Onkol 172:193–197

    PubMed  CAS  Google Scholar 

  • Grigsby PW et al. (1988) Results of surgery and irradiation and or irradiation alone for pituitary adenomas. J Neurooncol 6:129–134

    PubMed  CAS  Google Scholar 

  • Gingsby PW, Smpson JR, Emami BN et al. (1989) Prognostic factors and results of surgery and postoperative radiotherapy in the management of pituitary adenomas. Int J Radiat Oncol Biol Phys 16:1411–1417

    Google Scholar 

  • Isobe K et al. (2000) Postoperative radiation therapy for pituitary adenoma. J Neurooncol 48:135–140

    PubMed  CAS  Google Scholar 

  • Levy RP et al. (1996) Stereotactic helium-ion irradiation for Cushing’s disease, prolactinoma, and non-secreting adenoma – 36 years experience at Lawrence Berkeley Laboratory. Radiosurgery 1:66–74

    Google Scholar 

  • Milker-Zabel S et al. (2001) Fractionated stereotacally guided radiosurgery and radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 50:1279–1286

    PubMed  CAS  Google Scholar 

  • McCord MW et al. (1997) Radiotherapy for pituitary adenoma: long-term outcome and sequelae. Int J Radiat Oncol Biol Phys 39:437–444

    PubMed  CAS  Google Scholar 

  • Quabbe HJ, Fahlbusch R, Von zur Mühlen A, Müller OA, Schulte HM, Von Werder K, Willig R (1997) Rationelle Therapie in der Endokrinologie. Herausgegeben von der Deutschen Gesellschaft für Endokrinologie. In: Ziegler R, Landgraf R, Müller OA, Von zur Mühlen A (Redaktion) Hypothalamus und Hypophyse. Thieme, Stuttgart, S 1–33

    Google Scholar 

  • Shaw E et al. (1995) Radiation Therapy Oncology Group: Radiosurgery quality assurance Guidelines. Int J Radiat Oncol Biol Phys 33:301–307

    Google Scholar 

  • Zierhut D et al. (1995) External radiotherapy of pituitary adenomas. Int J Radiat Oncol Biol Phys 33:307–314

    PubMed  CAS  Google Scholar 

Zu Kraniopharyngeom

  • Becker G, Kortmann RD, Skaley M et al. (1999) The role of radiotherapy in the treatment of craniopharyngioma – indications, results, side effects. Front Radiat Ther Oncol 33:100–113

    PubMed  CAS  Google Scholar 

  • Bloom HJ, Glees J, Bell J (1990) The treatment and long-term prognosis of children with intracranial tumors: A study of 610 cases, 1950–1981. Int J Radiat Oncol Biol Phys 18:723–745

    PubMed  CAS  Google Scholar 

  • DeVile CJ, Grant DB, Hayward RD et al. (1996) Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child 75:108–114

    PubMed  CAS  Google Scholar 

  • Habrand JL, Ganry O, Couanet D et al. (1999) The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys 44:255–263

    PubMed  CAS  Google Scholar 

  • Hoffmann HJ, DeSilva M, Humphreys RP et al. (1992) Aggressive surgical management of cranio-pharyngiomas in children. J Neurosurg 76:47–52

    Google Scholar 

  • Rajan B, Ashley S, Gorman C et al. (1993) Craniopharyngioma – long-term results following limited surgery and radiotherapy. Radiother Oncol 26:1–10

    PubMed  CAS  Google Scholar 

  • Sanford RA, Muhlbauer MS (1991) Craniopharyngioma in children. Neurol Clin 9:453–465

    PubMed  CAS  Google Scholar 

  • Sanford RA (1994) Craniopharyngioma: Results of survey of the American Society of Pediatric Neurosurgery. Pediatr Neurosurg 21 (Suppl 1):39–43

    PubMed  Google Scholar 

  • Sung DI, Chang CH, Harisiadis L et al. (1981) Treatment results of craniopharyngiomas. Cancer 47:847–852

    Google Scholar 

  • Schulz-Ertner D, Frank C, Herfarth KK et al. (2002) Fractionated stereotactic radiotherapy for craniopharyngiomas. Int J Radiat Oncol Biol Phys 54:1114–1120

    PubMed  Google Scholar 

  • Tomita T, McLone D (1993) Radical resection of childhood craniopharyngiomas. Pediatr Neurosurg 19:6–14

    PubMed  CAS  Google Scholar 

Zu Akustikusneurinom

  • Andrews DW, Suarez O, Goldmann HW et al. (2001) Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys 50:1265–1278

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Lunsford L (1996) Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery. Radiother Oncol 41:215–219

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD (2001) Results of acoustic neuroma radiosurgery: An analysis of 5 years’ experience using current methods. J Neurosurg 94:1–6

    PubMed  CAS  Google Scholar 

  • Foote KD, Friedman WA, Buatti JM, Meeks SL, Bova FJ, Kubilis PS (2001) Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 95:440–449

    PubMed  CAS  Google Scholar 

  • Fuss M, Debus J, Lohr F et al. (2000) Conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas. Int J Radiat Oncol Biol Phys 48:1381–1387

    PubMed  CAS  Google Scholar 

  • Iwai Y, Yamanaka K, Shiotani M, Uyama T (2003) Radiosurgery for acoustic neuromas: results of low-dose treatment. Neurosurgery 53:282–287

    PubMed  Google Scholar 

  • Karpinos M, Teh BS, Zeck O et al. (2002) Treatment of acoustic neuroma: stereotactic radiosurgery vs. microsurgery. Int J Radiat Oncol Biol Phys 54:1410–1421

    PubMed  Google Scholar 

  • Linskey ME, Martinez AJ, Kondziolka D et al. (1993) The radiobiology of human acoustic schwannoma xenografts after stereotactic radiosurgery evaluated in the subrenal capsule of athymic mice. J Neurosurg 78:645–653

    PubMed  CAS  Google Scholar 

  • Meijer OW, Vandertop WP, Baayen JC, Slotman BJ (2003) Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys 56:1390–1396

    PubMed  CAS  Google Scholar 

  • Niranjan A, Lunsford LD, Flickinger JC et al. (1999) Dose reduction improves hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery 45:753–762

    PubMed  CAS  Google Scholar 

  • Perks JR, St George EJ, El Hamri K et al. (2003) Stereotactic radiosurgery XVI: Isodosimetric comparison of photon stereotactic radiosurgery techniques (gamma knife vs. micromultileaf collimator linear accelerator) for acoustic neuroma – and potential clinical importance. Int J Radiat Oncol Biol Phys 57:1450–1459

    PubMed  Google Scholar 

  • Petit JH, Hudes RS, Chen TT et al. (2001) Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery 49:1299–1306

    PubMed  CAS  Google Scholar 

  • Regis J, Pellet W, Delsanti C et al. (2002) Functional outcome after gamma knife surgery or micro-surgery for vestibular schwannomas. J Neurosurg 97:1091–1100

    PubMed  Google Scholar 

  • Rowe JG, Radatz MW, Walton L et al. (2003) Gamma knife stereotactic radiosurgery for unilateral acoustic tumors. J Neurol Neurosurg Psychiatry 74:1536–1542

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Shirato H, Takeichi N et al. (2001) Annual rate of hearing loss falls after fractionated stereotactic irradiation for vestibular schwannoma. Radiother Oncol 60:45–48

    PubMed  CAS  Google Scholar 

  • Samii M, Matthies C (1997 a) Management of 1000 vestibular schwannomas (acoustic neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurg 40:11–21

    CAS  Google Scholar 

  • Samii M, Matthies C (1997 b) Management of 1000 vestibular schwannomas (acoustic neuromas): hearing function in 1000 tumor resections. Neurosurg 40:248–260

    CAS  Google Scholar 

  • Samii M, Matthies C (1997 c) Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve preservation and restitution of function. Neurosurg 40:684–694

    CAS  Google Scholar 

  • Sawamura Y, Shirato H, Sakamoto T et al. (2003) Management of vestibular schwannoma by fractionated stereotactic radiotherapy and associated cerebrospinal fluid malabsorption. J Neurosurg 99:685–692

    PubMed  Google Scholar 

  • Seo Y, Fukuoka S, Nakagawara J et al. (1996) Effect of gamma knife radiosurgery on acoustic neurinomas. Stereotact Funct Neurosurg 66 (Suppl 1):93–102

    PubMed  Google Scholar 

  • Shirato H, Sakamoto T, Takeichi N et al. (2000) Fractionated stereotactic radiotherapy for vestibular schwannoma (VS): a comparison between cystic-type and solid-type VS. Int J Radiat Oncol Biol Phys 48:1395–1401

    PubMed  CAS  Google Scholar 

  • Tos M, Thomsen J (1992) Proposal of classification of tumor size in acoustic neuroma surgery. In: Tos M, Thomsen J (eds) Proceedings of the first international conference on acoustic neuroma. Kugler, Amsterdam

    Google Scholar 

  • Williams JA (2002) Fractionated stereotactic radiotherapy for acoustic neuromas. Int J Radiat Oncol Biol Phys 54:500–504

    PubMed  Google Scholar 

  • Yamakami I, Uchino Y, Kobayashi E et al. (2003) Conservative management, gamma-knife radiosurgery, and microsurgery for acoustic neurinomas: a systematic review of outcome and risk of three therapeutic options. Neurol Res 25:682–690

    PubMed  Google Scholar 

Zu Arteriovenöse Malformationen

  • Chang JH, Chang JW, Park YG, Chung S (2000) Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 93 (Suppl 3):96–101

    PubMed  Google Scholar 

  • Colombo F, Pozza F, Chierego G et al. (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–21

    PubMed  CAS  Google Scholar 

  • Deruty R, Pelissou-Guyotat I, Amat D et al. (1996) Complications after multidisciplinary treatment of cerebral arteriovenous malformations. Acta Neurochir (Wien) 138:119–131

    Google Scholar 

  • Deruty R, Pelissou-Guyotat I, Morel C et al. (1998) Reflections on the management of cerebral arteriovenous malformations. Surg Neurol 50:245–255

    PubMed  CAS  Google Scholar 

  • Dion JE, Mathis JM (1994) Cranial arteriovenous malformations: The role of embolization and stereotactic surgery. Neurosurg Clin North Am 5:459–474

    CAS  Google Scholar 

  • Engenhart R, Wowra B, Debus J et al. (1994) The role of high-dose, single-fraction irradiation in small and large intracranial AVMs. Int J Radiat Oncol Biol Phys 30:521–529

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1992) Morphology of radiation effects on normal tissue. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology 2nd ed. Lippincott, Philadelphia New York London Hagerstown, pp114–123

    Google Scholar 

  • Fleetwood IG, Marcellus ML, Levy RP et al. (2003) Deep arteriovenous malformations of the basal ganglia and thalamus: natural history. J Neurosurg 98:747–750

    PubMed  Google Scholar 

  • Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radio-surgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Pollock BE, Kondziolka D et al. (1996) LD A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radial Oncol Biol Phys 36:873–879

    CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Maitz AH et al. (1998) Analysis of neurological sequelae from radio-surgery of AVMs: how location affects outcome. Int J Radiat Oncol Biol Phys 40:273–278

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Lunsford LD et al. (1999) A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 44:67–74

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Maitz AH et al. (2002) An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–354

    PubMed  Google Scholar 

  • Friedman WA, Bova FJ, Bollampally S et al. (2003) Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 52:296–308

    PubMed  Google Scholar 

  • Graf CJ, Perret GE, Torner JC (1983) Bleeding from cerebral arteriovenous malformations as part of their natural history. J Neurosurg 58:331–337

    PubMed  CAS  Google Scholar 

  • Han PP, Ponce FA, Spetzler RF (2003) Intention-to-treat analysis of Spetzler-Martin grades IV and V AVMs: natural history and treatment paradigm. J Neurosurg 98:3–7

    PubMed  Google Scholar 

  • Kocher M, Voges J, Mueller R-P et al. (1998) Linac radiosurgery for patients with a limited number of brain metastases. J Radiosurg 1:9–15

    Google Scholar 

  • Laing RW, Childs J, Brada M (1992) Failure of conventionally fractionated radiotherapy to decrease the risk of hemorrhage in inoperable AVMs. Neurosurgery 30:872–875

    PubMed  CAS  Google Scholar 

  • Lindquist C, Steiner L, Blomgren H et al. (1986) Stereotactic radiation therapy of intracranial arteriovenous malformations. Acta Radiol 368 (Suppl):610–613

    Google Scholar 

  • Miyawaki L, Dowd C, Wara W et al. (1999) Five year results of linac radiosurgery for arteriovenous malformations: outcome for large avms. Int J Radiat Oncol Biol Phys 44:1089–1106

    PubMed  CAS  Google Scholar 

  • Nakata H, Yoshimine T, Murasawa A et al. (1995) Early bloodbrain barrier dis-ruption after high-dose single-fraction irradiation in rats. Acta Neurochir (Wien) 136:82–86

    PubMed  CAS  Google Scholar 

  • Pollock BE, Kline RW, Stafford SL (2000) The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 48:817–824

    PubMed  CAS  Google Scholar 

  • Poulsen MG (1987) Arteriovenous malformation – a summary of 6 cases treated with radiation therapy. Int J Radiat Oncol Biol Phys 13:1553–1557

    PubMed  CAS  Google Scholar 

  • Schlienger M, Atlan D, Lefkopoulos et al. (2000) Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys 46:1135–1142

    PubMed  CAS  Google Scholar 

  • Shin M, Kawamoto S, Kurita H et al. (2002) Retrospective analysis of a 10-year experience of stereo-tactic radiosurgery for AVMs in children and adolescents. J Neurosurg 97:779–784

    PubMed  Google Scholar 

  • Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    PubMed  CAS  Google Scholar 

  • Stapf C, Mast H, Sciacca RR et al. (2003) The New York Islands AVM Study: design, study progress, and initial results. Stroke 34:29–33

    Google Scholar 

  • Stefani MA, Porter PJ, terBrugge KG et al. (2002) Large and deep brain arteriovenous malformations are associated with risk of future hemorrhage. Stroke 33:1220–1224

    PubMed  Google Scholar 

  • Steiner L, Lindquist C, Adler JR et al. (1992) Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 77:1–8

    PubMed  CAS  Google Scholar 

  • van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven press, New York, pp 91–112

    Google Scholar 

  • Voges J, Treuer H, Sturm V et al. (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063

    PubMed  CAS  Google Scholar 

  • Voges J, Treuer H, Lehrke R et al. (1997) Risk analysis of LINAC radiosurgery in patients with arteriovenous malformation (AVM). Acta Neurochir (Wien) 68 (Suppl):118–123

    CAS  Google Scholar 

  • Wilms M, Kocher M, Makoski H-B et al. (2003) Langzeitergebnisse der semistereotaktischen konventionell fraktionierten Strahlenbehandlung arterio-venöser Malformationen des Gehirns. Strahlenther Onkol 179 (Suppl):69

    Google Scholar 

  • Wolbers JG, Mol HC, Kralendonk JH et al. (1999) Stereotactic radiosurgery with adjusted linear accelerator for cerebral arteriovenous malformations: preliminary results in the Netherlands. Ned Tijdschr Geneeskd 143:1215–1221

    PubMed  CAS  Google Scholar 

Zu Chordome

  • Austin-Seymour M, Munzenrider J, Goitein M et al. (1989) Fractionated proton radiation therapy for chordomas and low grade chondrosarcomas of the base of skull. J Neurosurg 70:13–17

    PubMed  CAS  Google Scholar 

  • Castro JR, Linstadt DE, Bahary J-P et al. (1994) Experience in charged particle irradiation of tumors of the skull base: 1977–1992. Int J Radiat Oncol Biol Phys 29:647–655

    PubMed  CAS  Google Scholar 

  • Catton C, O’Sullivan B, Bell R et al. (1996) Chordoma: long-term follow-up after radical photon irradiation. Radiother Oncol 41:67–72

    PubMed  CAS  Google Scholar 

  • Debus J, Schulz-Ertner D, Schad L et al. (2000) Stereotactic fractionated radiotherapy for chordomas and chondrosarcomas of the skull base. Int J Radiat Oncol Biol Phys 47:591–596

    PubMed  CAS  Google Scholar 

  • Fuller DB, Bloom JG (1988) Radiotherapy for chordoma. Int J Radiat Oncol Biol Phys 15:331–339

    PubMed  CAS  Google Scholar 

  • Hug EB, Loredo LN, Slater JD et al. (1999) Proton radiation therapy for chordomas and chondro-sarcomas of the skull base. J Neurosurg 91:432–439

    PubMed  CAS  Google Scholar 

  • Munzenrider JE, Liebsch NJ (1999) Proton therapy for tumors of the skull base. Strahlenther Onkol 175 (Suppl II):57–63

    PubMed  Google Scholar 

  • Muthukumar N, Kondziolka D, Lunsford LD et al. (1998) Stereotactic radiosurgery for chordoma and chondrosarcoma: further experience. Int J Radiat Oncol Biol Phys 41:387–392

    PubMed  CAS  Google Scholar 

  • Noel G, Habrand JL, Jauffret E et al. (2003) Radiation therapy for chordoma and chondrosarcoma of the skull base and the cervical spine. Prognostic factors and patterns of failure. Strahlenther Onkol 179:241–248

    PubMed  Google Scholar 

  • O’Connell JX, Laurette GR, Liebsch NJ et al. (1994) Base of skull chordoma. Cancer 74:2261–2267

    PubMed  Google Scholar 

  • Rich TA, Schiller A, Suit HD et al. (1985) Clinical and pathologic review of 48 cases of chordoma. Cancer 56:182–187

    PubMed  CAS  Google Scholar 

  • Romero J, Cardenes H, la Torre A et al. (1993) Chordoma: results of radiation therapy in eighteen patients. Radiother Oncol 29:27–32

    PubMed  CAS  Google Scholar 

  • Schulz-Ertner D, Nikoghosyan A, Thilmann C et al. (2003) Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Strahlenther Onkol 179:598–605

    PubMed  Google Scholar 

  • Zorlu F, Gurkaynak M, Yildiz F et al. (2000) Conventional external radiotherapy in the management of clivus chordomas with overt residual disease. Neurol Sci 21:203–207

    PubMed  CAS  Google Scholar 

Zu Glomustumor bzw. Chemodektom

  • Cole JM, Beiler D (1994) Long-term results of treatment of glomus jugulare and glomus vagale tumors with radiotherapy. Laryngoscope 104:1461 ff

    PubMed  CAS  Google Scholar 

  • Cummings BJ, Beale FA, Garrett PG et al. (1984) The treatment of glomus tumors in the temporal bone by megavoltage radiation. Cancer 53:2635 ff

    PubMed  CAS  Google Scholar 

  • Eustacchio S, Trummer M, Unger F, et al. (2002) The role of gamma knife radiosurgery in the management of glomus jugulare tumors. Acta Neurochir (Suppl) 84:91 ff

    CAS  Google Scholar 

  • Fisch U, Mattox P (1988) Microsurgery of the skull base. Thieme, New York

    Google Scholar 

  • Foote RL, Pollock BE, Gorman DA et al. (2002) Glomus jugulare tumor: tumor control and complication after stereotactic radiosurgery. Head Neck 24:332 ff

    PubMed  Google Scholar 

  • Hinerman RW, Mendenhall WM, Amdur RJ et al. (2001) Definitive radiotherapy in the management of chemodectomas arising in the temporal bone, carotid body and glomus vagale. Head Neck 23:363 ff

    PubMed  CAS  Google Scholar 

  • Jackson AW, Koshiba R (1974) Treatment of glomus jugulare tumors by radiotherapy. Proc R Soc Med 67:267 ff

    PubMed  CAS  Google Scholar 

  • Kim JA, Elkon D, Lim ML, Constable WC (1980) Optimum dose of radiotherapy for chemodectomas in the middle ear. Int J Radiat Oncol Biol Phys 6:815 ff

    PubMed  CAS  Google Scholar 

  • Lalwani AK, Jackler RK, Gutin PH (1993) Lethal fibrosarcoma complicating radiation therapy for bening glomus jugulare tumor. Am J Otol 14:398 ff

    PubMed  CAS  Google Scholar 

  • Lim M, Gibbs IC, Adler JR et al. (2003) The efficacy of linear accelerator stereotactic radiosurgery in treating glomus jugulare tumors. Technol Cancer Res Treat 2:261 ff

    PubMed  Google Scholar 

  • Liscak R, Vladyka V, Wowra B et al. (1999) Gamma knife radiosurgery of the glomus jugulare tumor – early multicentre experience. Acta Neurochir 141:1141 ff

    PubMed  CAS  Google Scholar 

  • Maarouf M, Voges J, Landwehr P et al. (2003) Stereotactic linear accelerator based radiosurgery for the treatment of patients with glomus jugulare tumors. Cancer 97:1093 ff

    PubMed  Google Scholar 

  • Million RR, Cassisi NJ, Mancuso AA, Stringer SP (1994) Chemodectomas (glomus body tumors). In: Million RR, Cassisi NJ (eds) Management of head and neck cancer. A multidisciplinary approach. 2nd edn. Philadelphia, pp 765–783

    Google Scholar 

  • Pohl F, Thile W, Koelbl O, Flentje M (2003) Retrospective Analyse von 12 Patienten mit Glomus jugulare Tumoren nach Radiotherapie. Strahlenther Onkol 179:3 ff

    Google Scholar 

  • Powell S Peters N, Hartmer C (1992) Chemodectoma of the head and neck: Results of treatment in 84 patients. Int J Radiat Oncol Biol Phys 22:919 ff

    PubMed  CAS  Google Scholar 

  • Sharma PD, Johnson AP, Whitton AC (1984) Radiotherapy for jugulo-tympanic paragangliomas (glomus jugulare tumors). J Laryngol Otol 98:621 ff

    PubMed  CAS  Google Scholar 

  • Springate SC, Weichselbaum RR (1990) Radiation or surgery for chemodectomas of the temporal bone: A review of local control and complications. Head Neck 12:303 ff

    PubMed  CAS  Google Scholar 

  • Wang ML, Hussey DH, Doorbos JF et al. (1988) Chemodectoma of temporal bone: a comparison of surgical and radiotherapeutic results. Int J Radiat Oncol Biol Phys 14:643 ff

    PubMed  CAS  Google Scholar 

  • Zabel A, Milker-Zabel S, Schulz-Erner D et al. (2003) Fraktionierte stereotaktische Konformationsbestrahlung von Glomus jugulare Tumoren. Strahlenther Onkol 179:67 ff

    Google Scholar 

Zu Juveniles Nasen-Rachen-Fibrom

  • Antonelli AR, Cappiello J, Donajo CA et al. (1997) Diagnosis, staging and treatment of juvenile nasopharyngeal angiofibroma. Laryngoscope 97:1319–1325

    Google Scholar 

  • Chandler JR, Goulding R, Moskowitz L et al. (1984) Nasopharyngeal angiofibromas: Staging and management. Ann Otol Rhinol Laryngol 93:322–329

    PubMed  CAS  Google Scholar 

  • Cummings BJ, Blend R, Keane T (1984) Primary radiation therapy for juvenile nasopharyngeal angiofibroma. Laryngoscope 94:1599–1605

    PubMed  CAS  Google Scholar 

  • Economou TS, Abemayor E, Ward PH (1988) Juvenile nasopharyngeal angiofibroma: an update of the UCLA experience, 1960–1985. Laryngoscope 98:170–175

    PubMed  CAS  Google Scholar 

  • Fields JN, Halverson KJ, Devineni VR et al. (1990) Juvenile nasopharyngeal angiofibroma: efficacy of radiation therapy. Radiology 176:263–265

    PubMed  CAS  Google Scholar 

  • Jereb J, Anggard A, Baryd I (1979) Juvenile nasopharyngeal angiofibroma. A clinical study of 69 cases. Acta Radiol Ther Phys Biol 9:302–310

    Google Scholar 

  • Kuppersmith RB, Teh BS, Donovan DT et al. (2000) The use of intensity modulated radiotherapy for the treatment of extensive and recurrent juvenile angiofibroma. Int J Pediatr Otorhinolaryngol 52:261–268

    PubMed  CAS  Google Scholar 

  • Lee JT, Chen P, Safa A et al. (2002) The role of radiation in the treatment of advanced juvenile angio-fibroma. Laryngoscope 112 (7 Pt 1):1213–1220

    PubMed  Google Scholar 

  • Makek MS, Andrews JC, Fisch U (1989) Malignant transformation of a nasopharyngeal angiofibroma. Laryngoscope 99:1088–1092

    PubMed  CAS  Google Scholar 

  • McGahan RA, Durrance FY, Parke RB Jr et al. (1989) The treatment of advanced juvenile nasopharyngeal angiofibroma. Int J Radiat Oncol Biol Phys 17:1067–1072

    PubMed  CAS  Google Scholar 

  • Million RR, Cassisi NJ, Mancuso AA, Stringer SP (1994) Juvenile Angiofibroma. In: Million RR, Cassisi NJ (eds) Management of head and neck cancer. A multidisciplinary approach. 2nd edn. Philadelphia, pp 627–641

    Google Scholar 

  • Reddy KA, Mendenhall WM, Amdur RJ et al. (2001) Long-term results of radiation therapy for juvenile nasopharyngeal angiofibroma. Am J Otolaryngol 22:172–175

    PubMed  CAS  Google Scholar 

  • Robinson ACR, Khouri GG, Ash DV et al. (1989) Evaluation of response following irradiation of juvenile angiofibromas. Br J Radiol 62:245–247

    PubMed  CAS  Google Scholar 

  • Sinha PP, Aziz HI (1978) Juvenile nasopharyngeal angiofibroma. A report of seven cases. Radiology 127(2):501–503

    PubMed  CAS  Google Scholar 

  • Spector JG (1998) Management of juvenile angiofibromata. Laryngoscope 98:1016–1026

    Google Scholar 

  • Waldman SR, Levine HL, Astor F et al. (1981) Surgical experience with nasopharyngeal angiofibroma. Arch Otolaryngol 107:677–682

    PubMed  CAS  Google Scholar 

Zu Pterygium

  • Alaniz-Camino F (1982) The use of postoperative beta radiation in the treatment of pterygia. Ophthalmic Surg 3:1022–1025

    Google Scholar 

  • Amano S, Motoyama Y, Oshika T, Eguchi S, Eguchi K (2000) Comparative study of intraoperative mitomycin C and beta irradiation in pterygium surgery. Br J Ophthalmol 84:618–621

    PubMed  CAS  Google Scholar 

  • Beyer DC (1991) Pterygia: single-fraction post-operative beta irradiation. Radiology 178:569–571

    PubMed  CAS  Google Scholar 

  • Chen PO, Ariyasu RG, Kaza V, Labreé L, McDonnell PJ (1995) A randomized trial comparing mitomycin C and conjunctival autograft after excision of primary pterygium. Am J Ophthal 12:151–160

    Google Scholar 

  • De Keizer RJW (1982) Pterygium excision with or without post-operative irradiation. Documenta Ophthalmologica 52:309–315

    PubMed  CAS  Google Scholar 

  • De Keizer RJ (1997) Pterygium excision with free conjunctival autograft (FCG) versus post-operative strontium 90 (90Sr) beta-irradiation. A prospective study. Int Ophthalmol 21:335–341

    PubMed  Google Scholar 

  • Fukushima S, Onoue T, Onoue T, Ozeki S (1999) Post-operative irradiation of pterygium with 90Sr eye applicator. Int J Radiation Oncol Biol Phys 43:597–600

    CAS  Google Scholar 

  • Jürgenliemk-Schulz IM, Hartman LJC, Roesink JM et al. (2004) Prevention of pterygium recurrence by postoperative single-dose beta-irradiation: a prospective randomized clinical double-blind trial. Int J Radiat Oncol Biol Phys 59: 1138–1147

    PubMed  Google Scholar 

  • MacKenzie FS, Hirst LW, Kynaston B, Bain C (1991) Recurrence rate and complications after beta irradiation for ptergyia. Ophthalmology 98:1776–1780

    PubMed  CAS  Google Scholar 

  • Mahar PS, Nwokora GE (1993) Role of mitomycin C in pterygium surgery. Br J Ophthalmol 77:433–435

    PubMed  CAS  Google Scholar 

  • Monteiro-Grillo I, Gaspar L, Monteiro-Grillo M, Pires F, Ribeiro da Silva JM (2000) Post-operative irradiation of primary or recurrent pterygium: results and sequalae. Int J Radiation Oncol Biol Phys 48:865–869

    CAS  Google Scholar 

  • Nishimura Y, Nakai A, Yoshimasu T et al. (2000) Long-term results of fractionated strontium-90 therapy for pterygia. Int J Radiat Oncol Biol Phys 46:137–141

    PubMed  CAS  Google Scholar 

  • Rubinfield RS, Pfister RR, Stein RM et al. (1992) Serious complication of topical mitomycin C after pterygium surgery. Ophthalmology 99:1647–1654

    Google Scholar 

  • Paijc B, Pugnale-Verilotte N, Greiner RH, Paijc D, Eggspuhler A (2002) Results of strontium-yttrium-90 for pterygia. J Fr Ophthalmol 25:473–479

    Google Scholar 

  • Pajic B, Pallas A, Aebersold D, Gruber G, Greiner RH (2004) Prospective study on exclusive, nonsurgical strontium-/yttrium-90 irradiation of pterygia. Strahlenther Onkol 180:510–516

    PubMed  Google Scholar 

  • Parayani SB, Scott WP, Wells JW Jr et al. (1994) Management of pterygium with surgery and radiation therapy. The North Florida Pterygium Study Group. Int J Radiat Oncol Biol Phys 28:101–103

    Google Scholar 

  • Schultze J, Hinrichs M, Kimmig B (1996) The results of strontium-90 contact therapy to prevent the recurrence of pterygium. Germ J Ophthalmol 5:207–210

    CAS  Google Scholar 

  • Smith RA, Dzugan SA, Kosko P (2001) Postoperative beta irradiation for control pterygium. J Miss State Med Assoc 42:167–169

    PubMed  CAS  Google Scholar 

  • Wesberry JM, Wesberry JM Sr (1993) Optimal use of beta irradiation in the treatment of pterygia. South Med J 86:633–637

    PubMed  Google Scholar 

  • Wilder RB, Buatti JM, Kittelson JM et al. (1992) Pterygium treated with excision and post-operative beta-irradiation. Int J Radiation Oncol Biol Phys 23:533–537

    CAS  Google Scholar 

  • Willner J, Flentje M, Lieb W et al. (2001) Soft X-ray therapy of recurrent pterygium-an alternative to Sr-90 eye applicators. Strahlenther Oncol 177:404–409

    CAS  Google Scholar 

Zu Hämangiom der Aderhaut

  • Augsburger JJ, Freire J, Brady LW (1997) Radiation therapy for choroidal and retinal hemangiomas. In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol 30:pp 265–280

    Google Scholar 

  • Frau E, Rumen F, Noel G et al. (2004) Low-dose proton beam therapy for circumscribed choroidal hemangiomas. Arch Ophthalmol 122:1471–1475

    PubMed  Google Scholar 

  • Hannouche D, Frau E, Desjardins L et al. (1997) Efficacy of proton therapy in circumscribed choroidal hemangiomas associated with serous retinal detachment. Opthalmology 104:1780–1784

    CAS  Google Scholar 

  • Kivela T, Tenhunen M, Joensuu T et al. (2003) Stereotactic radiotherapy of symptomatic circumscribed choroidal hemangiomas. Opthalmology 110:1977–1982

    Google Scholar 

  • Kreusel KM, Bornfeld N, Lommatzsch A et al. (1998) Ruthenium-106 brachytherapy for peripheral retinal capillary hemangioma. Ophthalmology 105(8):1386–1392

    PubMed  CAS  Google Scholar 

  • Madreperla SA, Hungerford JL, Plowman PN et al. (1997) Choroidal hemangiomas – visual and anatomic results of treatment by photocoagulation or radiation therapy. Ophthalmology 104:1773–1779

    PubMed  CAS  Google Scholar 

  • Madreperla SA (2001) Choroidal hemangioma treated with photodynamic therapy using verteporfin. Arch Ophthalmology 119:1606–1610

    CAS  Google Scholar 

  • Mashayekhi A, Shields CL (2003) Circumscribed choroidal hemangioma. Curr Opin Ophthalmol 14:142–149

    PubMed  Google Scholar 

  • Plowman PN, Hungerford JL (1997) Radiotherapy for ocular angiomas. Br J Ophthalmol 81:258–259

    PubMed  CAS  Google Scholar 

  • Sanborn GE, Augsburger JJ, Shields JA (1982) Treatment of circumscribed choroidal hemangiomas. Opthalmology 89:1374–1380

    CAS  Google Scholar 

  • Schilling H, Sauerwein W, Lommatzsch A et al. (1997) Long-term results after low dose ocular irradiation for choroidal hemangiomas. Br J Ophthalmol 81:267–273

    PubMed  CAS  Google Scholar 

  • Shields CL, Shields JA, Barrett J et al. (1995) Vasoproliferative tumors of the ocular fundus. Classification and clinical manifestations in 103 patients. Arch Ophthalmol 113:615–623

    PubMed  CAS  Google Scholar 

  • Shields CL, Honavar SC, Shields JA et al. (2001) Circumscribed choroidal hemangioma. Clinical manifestations and factors predictive of visual outcome in 200 consecutive cases. Ophthalmology 108:2237–2248

    PubMed  CAS  Google Scholar 

  • Shields JA, Shields CL, Materin MA et al. (2004) Changing concepts in management of circumscribed choroidal hemangioma. The 2003 J Howard Stokes Lecture (Part 1). Ophtalmic Surg Lasers 35:383–393

    Google Scholar 

  • Witschel H, Font RL (1976) Hemangioma of the choroid: A clinicopathologic study of 71 cases and a review of the literature. Surv Ophthalmol 20:415–431

    PubMed  CAS  Google Scholar 

  • Zografos L, Gailloud C, Bercher L (1989) Irradiation treatment of choroidal hemangiomas. Fr Ophthalmol 12:797–807

    CAS  Google Scholar 

  • Zografos L, Bercher L, Chamot L et al. (1996) Cobalt-60 treatment of choroidal hemangiomas. Am J Opthalmol 121:190–199

    CAS  Google Scholar 

  • Zografos L, Egger E, Bercher L et al. (1998) Proton beam irradiation of choroidal hemangiomas. Am J Ophthalmol 126:261–268

    PubMed  CAS  Google Scholar 

Zu Altersbedingte Makuladegeneration

  • Bergink GJ, Deutman AF, Van den Broek JFCM et al. (1994) Radiation therapy for subfoveal choroidal neovascular membranes in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 232:591–598

    PubMed  CAS  Google Scholar 

  • Bergink GJ, Hoyng CB, Van der Maazen RWM et al. (1998) A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in ages-related macular degeneration: Radiation versus observation. Graefes Arch Clin Exp Ophthalmol 236:321–325

    PubMed  CAS  Google Scholar 

  • Berta A, Vezendi L, Vamosi P (1995) Irradiation of macular subretinal neovascularisation using ruthenium applicators. Szemeset (Hung J Ophthalmol) 13:67–75

    Google Scholar 

  • Chakravarty M, Gardiner TA, Archer DB et al. (1993) Treatment of age-related subfoveal choroidal neovascular membranes by teletherapy: A pilot study. Br J Ophthalmol 77:265–273

    Google Scholar 

  • Char DH, Irvine AI, Posner MD et al. (1999) Randomized trial of radiation for age-related macular degeneration. Am J Ophthalmol 127:574–578

    PubMed  CAS  Google Scholar 

  • Fine SL, Maguire MG (2001) It is not time to abandon radiotherapy for neovascular age-related macular degeneration. Arch Ophthalmol 119:275–276

    PubMed  CAS  Google Scholar 

  • Finger PT, Berson A, Ng T, Szchecter A (1999) Ophthalmic plaque radiation therapy for age-related macular degeneration associated with subretinal neovascularisation. Am J Ophthalmol 127:170–177

    PubMed  CAS  Google Scholar 

  • Finger PT, Berson A, Sherr DA, Riley R, Balkin RA, Bosworth JL (1996) Radiation therapy for subretinal neovascularisation. Ophthalmology 103:878–889

    PubMed  CAS  Google Scholar 

  • Finger PT, Immonen I, Freire J, Brown G (2001) Brachytherapy for macular degeneration associated with subretinal neovascularisation. In: Alberti WE, Richard G, Sagerman RH (eds) Age-related macular degeneration. Current treatment concepts. Springer, Berlin Heidelberg New York Tokio, pp 167–173

    Google Scholar 

  • Hart PM, Chakravarthy U, MacKenzie G et al. (1996) Teletherapy for subfoveal choroidal neovascular-isation of age related macular degeneration: Results of follow up in a non-randomised study. Br J Ophthalmol 80:1046–1050

    PubMed  CAS  Google Scholar 

  • Hart PM, Chakravarthy U, Mackenzie G et al. (2002) Visual outcomes in the subfoveal radiotherapy study. Arch Ophthalmol 120:1029–1039

    PubMed  CAS  Google Scholar 

  • Hoeller U, Fuisting B, Schwartz R, Roeper B, Richard G, Alberti W (2005) Results of radiotherapy of subfoveal neovascularization with 16 and 20 Gy. Eye 19(11):1151–1156

    PubMed  CAS  Google Scholar 

  • Hollick EJ, Goble RR, Knowles PJ et al. (1996) Radiotherapy treatment of age-related subfoveal neovascular membranes in patients with good vision. Eye 10:609–616

    PubMed  Google Scholar 

  • International ARM Epidemiological Study Group (1995) An international classification system for ARM. Surv Ophthalmol 39:367–374

    Google Scholar 

  • Jaacola A, Heikkonen J, Tomilla et al. (1998 a) Strontium plaque irradiation of subfoveal neovascular membranes in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 236:24–30

    Google Scholar 

  • Jaakola A, Heikkonen J, Tarkkanen A, Immonen I (1998 b) Visual function after Strontium-90 plaque irradiation in patients with age-related subfoveal choroidal neovascularisation. Acta Ophthalmol Scand 76:1–5

    Google Scholar 

  • Kobayashi H, Kobayashi K (2000) Age-related macular degeneration: long-term results of radiotherapy for subfoveal neovascular membranes. Am J Ophtalmol 130:617–635

    CAS  Google Scholar 

  • Marcus DM, Sheils WC, Johnson MH et al. (2001) External beam irradiation of subfoveal choroidal neovascularisation complicating age-related macular degeneration: one-year-results of a prospective, double-masked, randomised clinical trial. Arch Ophthalmol 119:171–180

    PubMed  CAS  Google Scholar 

  • Mauget-Faysse M, Chiquet C, Milea D et al. (1999) Long term results of radiotherapy for subfoveal choroidal neovascularistion in age related macular degeneration. Br J Ophthalmol 83:923–928

    PubMed  CAS  Google Scholar 

  • Miller JW, Walsh AW, Kramer M et al. (1995) Photodynamic therapy of experimental choroidal neo-vascularisation using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 113:810–818

    PubMed  CAS  Google Scholar 

  • Munzenrider JE, Castro JR (1993) Particle treatment of the eye. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 45–55

    Google Scholar 

  • Pauleikhoff D, Holz FG (1996) Die altersabhängige Makuladegeneration. Ophthalmologe 93:299–315

    PubMed  CAS  Google Scholar 

  • Pöstgens H, Bodanowitz S, Kroll P (1997) Low dose radiation therapy for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 235:656–661

    PubMed  Google Scholar 

  • Prettenhofer M, Haas A, Mayer R, Oechs A et al. (1998) The photon therapy of subfoveal choroidal neovascularisation in age-dependant macular degeneration – the result of a prospective study in 40 patients. Strahlenther Onkol 174:613–617

    PubMed  CAS  Google Scholar 

  • RAD (The Radiation Therapy for Age-related Macular Degeneration Study) (1999) A prospectiv, randomized, double-masked trial on radiation therapy for neovascular age-related degeneration. Ophthalmol 106:2239–2247

    Google Scholar 

  • Sasai K, Murara R, Mandai M et al. (1997) Radiation therapy for ocular choroidal neovascularization (phase I/II study): Preliminary report. Int J Radiat Oncol Biol Phys 39:173–178

    PubMed  CAS  Google Scholar 

  • Spaide RF, Guyer DR, McCormick B et al. (1998) External beam radiation therapy for choroidal neo-vascularisation. Ophthalmology 105:24–30

    PubMed  CAS  Google Scholar 

  • Staar S, Krott R, Mueller R-P et al. (1999) External beam radiotherapy for subretinal neovascularisation in age-related macular degeneration. Is this treatment efficient? Int J Radiat Oncol Biol Phys 45:467–473

    PubMed  CAS  Google Scholar 

  • Stalmans P, Leys A, Van Limbergen E (1997) External beam radiotherapy (20 Gy, 2 fractions) fails to control the growth of choroidal neovascularization in age-related macular degeneration: A review of 111 cases. Retina 17:481–492

    PubMed  CAS  Google Scholar 

  • Thölen A, Meister A, Bernasconi PP et al. (1998) Radiotherapie von subretinalen Neovaskularisations-membranen bei altersabhängiger Makuladegeneration. Ophthalmologe 95:691–698

    PubMed  Google Scholar 

  • Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) Study Group (1999) Photodynamic therapy of subfoveal choroidal neovascularisation in age-related macular degeneration with verteporfin. One-year results of two randomised clinical trials-TAP report. I Arch Ophthalmol 117:1329–1345

    Google Scholar 

  • Valmaggia C, Ries G, Ballinari P (2002) Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: A randomized clinical trial. Am J Ophthalmology 133:521–529

    Google Scholar 

  • Yonemoto LT, Slater JD, Blacharski PB et al. (2000) Dose response in the treatment of subfoveal choroidal neovascularization in age-related macular degeneration: Results of a phase I/II dose escalation study using proton radiotherapy. J Radiosurg 3:47–54

    Google Scholar 

Zu Endokrine Orbitopathie

  • Bahn RS, Dutton CM, Naff N et al. (1998) Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J Clin Endocrinol Metab 83:998–1002

    PubMed  CAS  Google Scholar 

  • Bartalena L, Marcocci C, Chiovato L et al. (1983) Orbital cobalt irradiation combined with systemic corticosteroids for Graves’ ophthalmopathy: comparison with systemic corticosteroids alone. J Clin Endocrinol Metab 56:1139–1144

    PubMed  CAS  Google Scholar 

  • Broerse JJ, Snijders-Keilholz A, Jansen JTM et al. (1999) Assessment of carcinogenic risk for treatment of Graves’ ophthalmopathy in dependence on age and irradiation geometry. Radiother Oncol 53:205–208

    PubMed  CAS  Google Scholar 

  • Burch HB, Wartofsky L (1993) Graves’ ophthalmopathy. Current concepts regarding pathogenesis and management. Endocr Rev 146:747 ff

    Google Scholar 

  • Donaldson SS, Bagshaw MA, Kriss JP et al. (1973) Supervoltage orbital radiotherapy for Graves’ ophthalmo-pathy. J Clin Endocrinol Metab 37:276–285

    PubMed  CAS  Google Scholar 

  • Donaldson SS, McDougall IR, Kriss JP (1993) Graves’ Disease. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 191–197

    Google Scholar 

  • Donaldson SS, McDougall IR (2002) Graves’ Disease. Radiotherapy of intraocular and orbital tumors. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 145–152

    Google Scholar 

  • Esser J, Sauerwein W, Olbricht T et al. (1995) Corticoid- und Strahlentherapie bei endokriner Orbitopathie. Nuklearmediziner 18:163–177

    Google Scholar 

  • Friedrich A, Kamprad F, Goldmann A et al. (1997) Clinical importance of radiotherapy in the treatment of Graves’ Disease. In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol (Basel) 30:206–217

    Google Scholar 

  • Gerling J, Kommerell G, Henne K et al. (2003) Retrobulbar irradiation for thyroid-associated orbitopathy: double blind comparison between 2.4 and 16 Gy. Int J Radiat Oncol Biol Phys 55:182–189

    PubMed  Google Scholar 

  • Heyd R, Seegenschmiedt MH, Strassmann G et al. (2003) Radiotherapy of Graves’ Orbitopathy: results of a national survey. Strahlenther Onkol 179:372–376

    PubMed  Google Scholar 

  • Hurbli T, Char DH, Harris J et al. (1985) Radiation therapy for thyroid eye diseases. Am J Ophthalmol 99:633–637

    PubMed  CAS  Google Scholar 

  • Jansen JTM, Broerse J, Zoetelief J, Klein C, Seegenschmiedt MH (2001) Assessment of carcinogenic risk in the treatment of benign disease of knee and shoulder joint. In: Seegenschmiedt MH, Makoski HB (Hrsg) 15. Kolloquium Radioonkologie/Strahlentherapie, Radiotherapie bei gutartigen Erkrankungen. Diplodocus-Verlag, Altenberge, pp 13–15

    Google Scholar 

  • Jansen JT, Broerse JJ, Zoetelief J, Klein C, Seegenschmiedt HM (2005) Estimation of the carcinogenic risk of radiotherapy of benign diseases from shoulder to heel. Radiother Oncol 76(3):270–277

    PubMed  Google Scholar 

  • Kahaly G, Förster G, Pitz S, Rösler HP, Mann W (1997) Aktuelle interdisziplinäre Diagnostik und Therapie der endokrinen Orbitopathie. Dtsch med Wschr 122:27–32

    PubMed  CAS  Google Scholar 

  • Kinyoun JL, Orcutt JC (1987) Radiation retinopathy. J Am Med Ass 258:610–611

    CAS  Google Scholar 

  • Lloyd WC, Leone CR (1992) Supervoltage orbital radiotherapy in 36 cases of Graves’ disease. Am J Ophthalmol 113:374–380

    PubMed  Google Scholar 

  • Marcocci C, Bartalena L, Panicucci M et al. (1987) Orbital cobalt irradiation combined with retrobulbar or systematic corticosteroids for Graves’ ophthalmopathy: a comparative study. Clin Endocrinol 27:33–42

    CAS  Google Scholar 

  • Miller ML, Goldberg SH, Bullock JD (1991) Radiation retinopathy after radiotherapy for thyroid-related ophthalmopathy. Am J Ophthalmol 112:600–601

    PubMed  CAS  Google Scholar 

  • Mourits M, Koornneef L, Wiersinga WM et al. (1990) Orbital decompression for Graves’ ophthalmopathy by inferomedial plus lateral and by coronal approach. Ophthalmology 97:636–641

    PubMed  CAS  Google Scholar 

  • Nygaard B, Specht L (1998) Transitory blindness after retrobulbar irradiation of Graves’ ophthalmopathy. Lancet 351:725–726

    PubMed  CAS  Google Scholar 

  • Marten et al. (1999) RTO 53 (Suppl 1) Abstr. 17

    Google Scholar 

  • Olivotto IA, Ludgate CM, Allen LH et al. (1985) Supervoltage radiotherapy for Graveś ophthalmopathy: CCABC technique and results. Int J Radiat Oncol Biol Phys 11:2085–2090

    PubMed  CAS  Google Scholar 

  • Order SE, Donaldson SS (1990) Radiation therapy of benign diseases. A clinical guide. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Palmer D, Greenberg P, Cornell P, Parker RG (1987) Radiation therapy for Graves’ ophthalmopathy. A retrospective analysis. Int J Radiat Oncol Biol Phys 13:1815–1820

    PubMed  CAS  Google Scholar 

  • Petersen IA, Donaldson SS, McDougall IR, Kriss JP (1990) Prognostic factors in the radiotherapy of Graves’ ophthalmopathy. Int J Radiat Oncol Biol Phys 19:259–264

    PubMed  CAS  Google Scholar 

  • Prummel MF, Mourits MP, Blank L et al. (1993) Randomized double-blind trial of prednisone versus radiotherapy. In: Graves’ ophthalmopathy. Lancet 342:949–954

    PubMed  CAS  Google Scholar 

  • Prummel MF, Bakker A, Wiersinga WM et al. (2003) Multi-center study on the characteristics and treatment strategies of patients with Graves’ orbitopathy: first European Group on Graves’ orbitopathy experience. Eur J Endocrinol 148:491–495

    PubMed  CAS  Google Scholar 

  • Sandler HM, Rubenstein JH, Fowble BL et al. (1989) Results of radiotherapy for thyroid ophthalmopathy. Int J Radiat Oncol Biol Phys 17:823–827

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Gusek-Schneider G et al. (1998) Endokrine Orbitopathie: Vergleich der Langzeitergebnisse und Klassifikationen nach Radiotherapie. Strahlenther Onkol 174:449–456

    PubMed  CAS  Google Scholar 

  • Snijders-Keilholz A, De Keizer RJW, Goslings BM et al. (1996) Probable risk of tumor induction after retroorbital irradiation for Graves ophthalmopathy. Radiother Oncol 38:69–71

    PubMed  CAS  Google Scholar 

  • Staar S, Müller RP, Hammer M, Nolte M (1997) Results and prognostic factors in retrobulbar radiotherapy combined with systemic corticosteroids for endocrine orbitopathy (Graves’ Disease). In: Wiegel T, Bornfeld N, Foerster MH, Hinkelbein W (eds) Radiotherapy of ocular disease. Front Radiat Ther Oncol (Basel) 30:206–217

    Google Scholar 

  • Van Leeuwen FE, Klokman WJ, Hagenbeek A et al. (1994) Second cancer risk following Hodgkin’s Disease: a 20-year follow-up. J Clin Oncol 12:312–325

    PubMed  CAS  Google Scholar 

  • Van Ouwerkerk BM, Wijngaarde R, Hennemann G et al. (1985) Radiotherapy of severe ophthalmic Graves’ disease. J Endocrinol Invest 8:241–247

    PubMed  CAS  Google Scholar 

  • Werner SC (1977) Modification of the classification of the eye changes of Graves’ disease: Recommendations of the Ad Hoc Committee of The American Thyroid Association. J Clin Endocrinol Metab 44:203–204

    PubMed  CAS  Google Scholar 

  • Wilson WB, Prochoda M (1995) Radiotherapy for thyroid orbitopathy. Effects on extraocular muscle balance. Arch Ophthalmol 113:1420–1425

    PubMed  CAS  Google Scholar 

Zu Reaktive lymphoide Hyperplasie bzw. Pseudotumor orbitae

  • Ampil FL, Bahrassa FS (1985) Primary orbital lymphoma pseudotumor, case reports and review of radiotherapy literature. J Surg Oncol 30:91–95

    PubMed  CAS  Google Scholar 

  • Austin-Seymour MM, Donaldson SS, Egbert PR, McDougall IR, Kriss JP (1985) Radiotherapy of lymphoid diseases of the orbit. Int J Radiat Oncol Biol Phys 11:371–379

    PubMed  CAS  Google Scholar 

  • Barthold HJ, Harvey A, Markoe AM et al. (1986) Treatment of orbital pseudotumors and lymphoma. Am J Clin Oncol 9:527–532

    PubMed  Google Scholar 

  • Bogart JA, Sagerman RH, Chung CT (2002) Management of orbital lymphoma. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 153–162

    Google Scholar 

  • Donaldson SS, McDougall IR, Kriss JP (1993) Graves’ Disease. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 191–197

    Google Scholar 

  • Donaldson SS, McDougall IR (2002) Graves’ Disease. Radiotherapy of intraocular and orbital tumors. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. 2nd edn. Springer, Berlin Heidelberg New York Tokio, pp 145–152

    Google Scholar 

  • Fritzpatrick PI, Macko SL (1984) Lymphoreticular tumors of orbit. Int J Radiat Oncol Biol Phys 10:333–340

    Google Scholar 

  • Flanders AE, Mafee MF, Rao VM, Choi KH (1989) CT characteristics of orbital pseudotumors and other inflammatory orbital processes. J Comput Assist Tomgr 13:40–47

    CAS  Google Scholar 

  • Fujii H, Fujisada H, Kondo T, Takahashi T, Okada S (1985) Orbital pseudotumor: histopathological classification and treatment. Ophthalmol 190:230–242

    CAS  Google Scholar 

  • Hogan M (1964) Discussion of orbital tumors. In: Boniuk M (ed) Ocular and adnexal tumors: new and controversial aspect. Mosby, St Louis, pp 447–458

    Google Scholar 

  • Henderson JW (ed) (1980) Orbital tumors, 2nd ed: Lymphocytic inflammatory pseudotumor. Brian C.Decker, New York 1973:512–526

    Google Scholar 

  • Isaacson PG, Norton AJ (eds) (1994) Extranodal lymphomas: Chapter 7: Lymphomas of the ocular adnexa and eye. Churchill Livingstone, Edinburgh, pp 117–129

    Google Scholar 

  • Jacobiec FM, Jones JS (1979) Orbital inflammations. In: Duane (ed) Clinical ophthalmology XII. Mosby, Philadelphia

    Google Scholar 

  • Jacobiec FA, McClean I, Font FL (1979) Clinicopathologic characteristics of orbital lymphoid hyperplasia. Ophtalmology 86:948–952

    Google Scholar 

  • Keleti D, Flickinger JC, Hobson SR, Mittal BB (1992) Radiotherapy of lymphoproliferative diseases of the orbit: surveillance of 65 cases. Am J Clin Oncol 15:422–427

    PubMed  CAS  Google Scholar 

  • Kennerdell JS, Johnson BL, Deutsch M (1979) Radiation treatment of orbital lymphoid hyperplasia. Ophthalmology 86:942–947

    PubMed  CAS  Google Scholar 

  • Knowles DM, Jacobiec FA (1989) Orbital lymphoid neoplasms: A clinical pathologic study of 60 patients. Cancer 46:576–589

    Google Scholar 

  • Lambo MJ, Brady LW, Shields CL (1993) Lymphoid tumors of the orbit. In: Alberti WE, Sagerman RH (eds) Radiotherapy of intraocular and orbital tumors. Springer, Berlin Heidelberg New York Tokio, pp 205–216

    Google Scholar 

  • Lanciano R, Fowble B, Sergott R et al. (1989) The results of radiotherapy for orbital pseudotumor. Int J Radiat Oncol Biol Phys 18:407–411

    Google Scholar 

  • Leone C, Lloyd T (1985) Treatment protocol for orbital inflammatory disease. Ophthalmology 92:1325–1331

    PubMed  Google Scholar 

  • Mittal BB, Deutsch M, Kennerdell J, Johnson B (1986) Paraocular lymphoid tumors. Radiology 159:793–796

    PubMed  CAS  Google Scholar 

  • Notter M, Kern T, Forrer A, Meister F, Schwegler N (1997) Radiotherapy of pseudotumor orbitae. Front Radiat Ther Oncol 30:180–191

    PubMed  CAS  Google Scholar 

  • Notter M (2000) Strahlentherapie bei pseudotumor orbitae. In: Seegenschmiedt MH, Makoski HB (eds) Radiotherapie gutartiger Erkrankungen, Symposium 5.–6. März 2000. Diplodocus, Altenberge, S 123–136

    Google Scholar 

  • Orcutt JC, Garner A, Henk JM, Wright JE (1983) Treatment of idiopathic inflammatory orbital pseudotumot by radiotherapy. Br J Ophthalmol 67:570–574

    PubMed  CAS  Google Scholar 

  • Rao DV, Cosby K, Smith M, Griffith R (1982) Lymphomas and pseudolymphomas of the orbit (abstr.). Int J Radiat Oncol Biol Phys 8 (Suppl):114

    Google Scholar 

  • Sergott RC; Gaser JS; Charyulu K (1981) Radiotherapy of idiopathic inflammatory pseudotumor: Indications and results. Arch Ophthalmol 99:853–856

    Google Scholar 

  • Sigelman J, Jacobiec F (1978) Lymphoid lesions of the conjunctiva: Relation of histopathology and outcome. Ophthalmology 85:818–843

    PubMed  CAS  Google Scholar 

  • Snijders-Keilholz A, De Keinzer RJW, Goslings BM et al. (1996) Probable risk of tumor induction after retro-orbital irradiation for Grave’s ophthalmopathy. Radiother Oncol 38:69–71

    PubMed  CAS  Google Scholar 

  • Wagner W, Gerding H, Busse H (1992) Pseudotumor orbitae – ein Chamäleon in Diagnostik und Therapie? Strahlenther Onkol 168:528–535

    PubMed  CAS  Google Scholar 

  • Waldman TA, Korsmeyer SJ, Bakshi A et al. (1985) Molecular genetic analysis of human lymphoid neoplasms. Immunoglobulin genes and the c-myc oncogene. Ann Int Med 102:497–510

    Google Scholar 

  • Yamashita K, Kobayashi S, Kando M et al. (1995) Elevated anti neutrophil cytoplasmatic antibody titer in a patient with atypical orbital pseudotumor. Ophthalmologica 209:172–175

    PubMed  CAS  Google Scholar 

Zu Allgemeine Gesichtspunkte

  • Constant CR, Murley AHG (1987) A clinical method of functional assessment of the shoulder. Clin Orthop Rel Res 214:160–164

    Google Scholar 

  • Gocht H (1897) Therapeutische Verwendung der Röntgenstrahlen. Fortschr Röntgenstr 1:14

    Google Scholar 

  • Insall J (1989) Rationale of the knee society clinical rating system. Clinical Orthop 248:13–14

    Google Scholar 

  • Keilholz L, Seegenschmiedt MH, Sauer R (1998) Radiotherapy of degenerative joint disorders. Indication, technique and clinical results. Strahlenther Onkol 174:243–250

    PubMed  CAS  Google Scholar 

  • Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    PubMed  CAS  Google Scholar 

  • Goldie I, Rosengren B, Moberg E et al. (1970) Evaluation of radiation treatment of painful conditions of the locomotor system. Acta Radiol Ther Phys 9:311–322

    CAS  Google Scholar 

  • Harris WH (1976) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by Mold arthroplasty. End result study using new method of evaluation. J Bone Joint Surg 51A:737–755

    Google Scholar 

  • Leer JWH, van Houtte P, Daelaar J (1998) Indications and treatment schedules for irradiation of benign diseases: a survey. Radiother Oncol 48:249–257

    PubMed  CAS  Google Scholar 

  • Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  • Morrey BF, An KN, Chao EY (1985) Functional evaluation of the elbow. In: Morrey BF (ed) The elbow and its disorders. Saunders Co., Philadelphia London Toronto, pp 73–91

    Google Scholar 

  • Order S, Donaldson SS (1999) Radiation Therapy of Benign Diseases, Medical Radiology, 2nd edn. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Plenk HP (1952) Calcifying tendinitis of the shoulder. A critical study of the value of X-ray therapy. Radiology 59:384–389

    PubMed  CAS  Google Scholar 

  • Rödel F, Kamprad F, Sauer R, Hildebrandt G (2002) Funktionelle und molekulare Aspekte der anti-inflamma-torischen Wirkung niedrig dosierter Radiotherapie: Strahlenther Onkol 178:1–9

    PubMed  Google Scholar 

  • Sasaki T, Monji Y, Tsuge Y (1987) High tibial osteotomy combined with anterior displacement of the tibial tubercle for osteoarthritis of knee. Internat J Orthopaedics 10:31–40

    Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Stecken A, Katalinic A, Sauer R (1996) Radiotherapie bei plantarem Fersensporn. Strahlenther Onkol 172:376–383

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humero-scapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202

    PubMed  CAS  Google Scholar 

  • Tegner Y, Lysholm D (1985) Rating systems in evaluation of knee ligament injuries. Clin Orthop 198:43–49

    PubMed  Google Scholar 

  • Valtonen EJ, Lilius HG, Malmio K (1975) The value of roentgen irradiation in the treatment of painful degenerative and inflammatory musculo-skeletal conditions. Scand J Rheumatol 4:247–249

    PubMed  CAS  Google Scholar 

  • von Pannewitz G (1933) Die Röntgentherapie der Arthritis deformans. Klinische und experimentelle Untersuchungen. Ergebn Med Strahlenforsch 6:62–126

    Google Scholar 

  • von Pannewitz G (1970) Degenerative Erkrankungen. In: Diethelm L, et al. (eds) Handbuch der medizinischen Radiologie Band XVII. Springer, Berlin Heidelberg New York Tokio, S 73–107

    Google Scholar 

Zu Bursitis

  • Schunck J, Jerosch J (2004) Endoskopische Resektion der Bursa trochanterica. Arthroskopie: 96–99

    Google Scholar 

  • Leitzen C, Seegenschmiedt MH (2005) Radiotherapie bei Bursitis trochanterica. In: Seegenschmiedt MH, Micke O (eds) Radiotherapie bei gutartigen Erkrankungen, Symposium 11.–12. März 2005, Diplodocus, Altenberge, S 87–96

    Google Scholar 

Zu Peritendinopathia humeroscapularis

  • Adamietz B, Sauer R (2003) Strahlentherapie beim Impingement-Syndrom des Schultergelenks. Strahlenther Onkol 179(Sondernr 1):1

    Google Scholar 

  • Baensch WE (1953) Röntgentherapie der Tendinitis calcarea. Strahlentherapie 90:514–518

    PubMed  CAS  Google Scholar 

  • Goldie I, Rosengren B, Moberg E et al. (1970) Evaluation of radiation treatment of painful conditions of the locomotor system. Acta Radiol Ther Phys 9:311–322

    CAS  Google Scholar 

  • Hassenstein E, Nüsslin F, Hartweg H, Renner KH (1979) Die Strahlenbehandlung der Periarthritis humeroscapularis. Strahlentherapie 155:87–93

    PubMed  CAS  Google Scholar 

  • Hassenstein EOM (1986) Die Strahlenbehandlung gutartiger Erkrankungen – Indikationen, Ergebnisse und Technik. Röntgen-Blätter 39:21–23

    CAS  Google Scholar 

  • Hess F, Bonmann KH (1955) Die Röntgentherapie der Arthrosen, Spondylosen, der Periarthritis humeroscapularis und der Epicondylitis. Strahlentherapie 96:75–81

    PubMed  CAS  Google Scholar 

  • Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121

    Google Scholar 

  • Jenkinson EL, Norman RC, Wilson IA (1952) Radiation therapy of the nontraumatic painful shoulder. Radiology 58:192–197

    PubMed  CAS  Google Scholar 

  • Keilholz L, Seegenschmiedt MH, Kutzki D, Sauer R (1995) Radiotherapy of the periarthritis humeroscapularis. Strahlenther Onkol 171:379–384

    PubMed  CAS  Google Scholar 

  • Keinert K, Schumann E, Grasshof S (1972) Die Strahlentherapie der Periarthritis humero-scapularis. Radiobiol Radiother 13:3–8

    CAS  Google Scholar 

  • Kutzner J, Störkel S, Schilling F, Zapf S (1988) Die Bestrahlung als Therapie bei der sternokostoklaviculären Hyperostose. Med Klin 83:516–519

    CAS  Google Scholar 

  • Lindner H, Freislederer R (1982) Langzeitergebnisse der Bestrahlung von degenerativen Gelenkerkrankungen. Strahlentherapie 158:217–223

    PubMed  CAS  Google Scholar 

  • Mustakallio S (1939) Über die Röntgenbehandlung der Periarthritis humeroscapularis. Acta Radiol (Stockh) 20:22–32

    Google Scholar 

  • Plenk HP (1952) Calcifying tendinitis of the shoulder. A critical study of the value of X-ray therapy. Radiology 59:384–389

    PubMed  CAS  Google Scholar 

  • Reinhold H, Sauerbrey R (1961) Die Röntgentherapie des Schulter-Arm-Syndroms, Epikondylitiden an Schulter und Ellenbogen. Dtsch Med Wschr 86:163–168

    PubMed  CAS  Google Scholar 

  • Sautter-Bihl ML, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ-entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt H, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humeroscapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28

    PubMed  CAS  Google Scholar 

  • Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48

    PubMed  CAS  Google Scholar 

  • Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186

    Google Scholar 

  • Zwicker C, Hering M, Brecht L, Kuhne-Velte HJ, Kern A (1998) Strahlentherapie der Periarthritis humeroscapularis mit ultraharten Photonen. Vergleich mit kernspintomographischen Befunden. Radiologe 38:774–778

    PubMed  CAS  Google Scholar 

Zu Epicondylopathia humeri

  • Cocchi U (1943) Erfolge und Mi?erfolge bei Röntgenbestrahlung nichtkrebsiger Leiden. Strahlentherapie 73:255–284

    Google Scholar 

  • Coonrad RW, Hooper WR (1973) Tennis elbow: Its course, natural history, conservative and surgical management. J Bone Joint Surg 55-A:1177–1780

    Google Scholar 

  • Gärtner C, Schüttauf M, Below M et al. (1988) Zur strahlentherapeutischen Behandlung chronisch-rezidivierender Skelettveränderungen an der Klinik für Onkologie. Radiobiol Radiother 29:687–696

    Google Scholar 

  • Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121

    Google Scholar 

  • Kammerer R, Bollmann G, Schwenger P et al. (1990) Ergebnisse der Strahlentherapie der Epicondylitis humeri bei unterschiedlicher Dosierung. Radiobiol Radiother 31:503–507

    CAS  Google Scholar 

  • Keim H (1965) Mitteilung über die Durchführung der Entzündungsbestrahlung mit dem Telekobaltgerät. Strahlentherapie 127:49–52

    PubMed  CAS  Google Scholar 

  • Mantell BS (1986) The management of benign conditions. In: Hope-Stone HF (ed) Radiotherapy in clinical practice. Butterworths, London, pp 384–399

    Google Scholar 

  • Sautter-Bihl M-L, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ – entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Martus P et al. (1997) Epicondylopathia humeri: Indication, technique and clinical results of radiotherapy. Strahlenther Onkol 173:208–218

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L (1998) Epicondylopathia humeri and peritendinitis humeroscapularis: evaluation of radiation therapy long-term results and literature review. Radiother Oncol 47:17–28

    PubMed  CAS  Google Scholar 

  • Siebert W, Seichert N, Siebert B et al. (1987) What is the efficacy of soft and mild lasers in therapy of tendinopathies? A double-blind study. Arch Orthop Trauma Surg 106:358–363

    PubMed  CAS  Google Scholar 

  • von Pannewitz G (1960) Zur Röntgentherapie entzündlicher Krankheiten. Med Welt 10:181–189

    Google Scholar 

  • von Pannewitz G (1970) Degenerative Erkrankungen In: Handbuch der medizinischen Radiologie Bd. XVII. Springer, Berlin Heidelberg New York Tokio, S 96–98

    Google Scholar 

  • Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48

    PubMed  CAS  Google Scholar 

  • Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186

    Google Scholar 

Zu Kalkaneodynie

  • Basche S, Drescher W, Mohr K (1980) Ergebnisse der Röntgenstrahlentherapie beim Fersensporn. Radiobiol Radiother 21:233–236

    CAS  Google Scholar 

  • Cocchi U (1943) Erfolge und Mißerfolge bei Röntgenbestrahlung nichtkrebsiger Leiden. Strahlentherapie 73:255–284

    Google Scholar 

  • Glatzel M, Bäsecke S, Krauß A et al. (2001) Radiotherapy of painful plantar heel spur. BenigNews 2(2):18–19

    Google Scholar 

  • Heyd R, Strassmann G, Filipowicz I et al. (2001) Radiotherapy in the management of inflammatory calcaneal heel spurs: results of a prospektive study. In: Seegenschmiedt MH, Makoski HB (Hrsg) 11. Kolloquium Radioonkologie/Strahlentherapie. Radiotherapie von gutartigen Erkrankungen. Diplodocus Press, Altenberge, S 173–183

    Google Scholar 

  • Keim H (1965) Mitteilung über die Durchführung der Entzündungsbestrahlung mit dem Telekobaltgerät. Strahlentherapie 127:49–52

    PubMed  CAS  Google Scholar 

  • Koeppen D, Bollmann G, Gademann G (2000) Ein Beitrag zur Dosiswirkungsbeziehung bei der Röntgentherapie des Fersensporns (Abstr.) Strahlenther Onkol 176 (Suppl 1):91

    Google Scholar 

  • Mantell BS (1986) The management of benign conditions. In: Hope-Stone HF (ed) Radiotherapy in clinical practice. Butterworths, London, pp 384–399

    Google Scholar 

  • Mitrov G, Harbov I (1967) Unsere Erfahrungen mit der Strahlentherapie von nichttumorartigen Erkrankungen. Radiobiol Radiother 8:419–423

    CAS  Google Scholar 

  • Oehler W, Hentschel B (2000) Niedrigdosierte analgetische Radiotherapie von Arthrosen. Ärztebl Thüring 11:92–95

    Google Scholar 

  • Sautter-Bihl M-L, Liebermeister E, Scheurig H et al. (1993) Analgetische Bestrahlung degenerativ-entzündlicher Skeletterkrankungen. Dtsch Med Wschr 118:493–498

    PubMed  CAS  Google Scholar 

  • Schäfer U, Micke O, Glashörster M et al. (1995) Strahlentherapeutische Behandlung des schmerzhaften Fersenbeinsporns. Strahlenther Onkol 171:202–206

    PubMed  Google Scholar 

  • Schreiber H, Böhnlein G, Ziegler K (2000) Strahlentherapie des schmerzhaften Fersensporns. In: Seegenschmiedt MH, Makoski HB (Hrsg) 10. Kolloquium Radioonkologie/Strahlentherapie. Radiotherapie von gutartigen Erkrankungen. Diplodocus Press, Altenberge, S 186

    Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Katalinic A et al. (1996) Heel spur: radiation therapy for refractory pain – results with three treatment concepts. Radiology 200:271–276

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Stecken A et al. (1996) Radiotherapy of plantar heel spur: indication, technique and clinical results for different dose concepts. Strahlenther Onkol 172:376–383

    PubMed  CAS  Google Scholar 

  • Wieland C, Kuttig H (1965) Hochvolttherapie bei Arthrosen und Entzündungen. Strahlentherapie 127:44–48

    PubMed  CAS  Google Scholar 

  • Zschache H (1972) Ergebnisse der Röntgenschwachbestrahlung. Radiobiol Radiother 13:181–186

    Google Scholar 

Zu Osteoarthrosis deformans

  • Hess F (1980) Die Entzündungsbestrahlung. Dtsch Ärztebl 17:1119–1121

    Google Scholar 

  • Hess F (1982) Die Strahlentherapie entzündlicher und degenerativer Erkrankungen. Therapiewoche 32:4798–4804

    Google Scholar 

  • Hess F (1986) Die Strahlentherapie gutartiger Erkrankungen. Dtsch Ärztebl 83:3374–3376

    Google Scholar 

Zu Desmoid (aggressive Fibromatose

  • Acker JC, Bossen EH, Halperin EC (1993) The management of desmoid tumors.Int J Radiat Oncol Biol Phys 26:851–858

    PubMed  CAS  Google Scholar 

  • Assad WA, Nori D, Hilaris BS et al. (1986) Role of brachytherapy in the management of desmoid tumors. Int J Radiat Oncol Biol Phys 12:901–906

    PubMed  CAS  Google Scholar 

  • Atahan I, Lale F, Akyol F et al. (1989) Radiotherapy in the management of aggressive fibromatosis. Brit J Radiol 62:854–856

    PubMed  CAS  Google Scholar 

  • Bataini JP, Belloir C, Mazabraud A et al. (1988) Desmoid tumors in adults: the role of radiotherapy in their management. Am J Surg 155:754–760

    PubMed  CAS  Google Scholar 

  • Ballo MT, Zagars GK, Pollack A (1999) Desmoid tumor: Prognostic factors and outcome after surgery, radiation therapy or combined surgery and radiation therapy. J Clin Oncol 17:158–167

    PubMed  CAS  Google Scholar 

  • Belliveau P, Graham AM (1984) Mesenteric desmoid tumor in Gardner’s syndrome treated by Sulindac. Dis Colon Rect 10:53–54

    Google Scholar 

  • Bataini JP, Belloir C, Mazabraud A et al. (1988) Desmoid tumors in adults: The role of radiotherapy in their management. Am J Surg 155:754–760

    PubMed  CAS  Google Scholar 

  • Enzinger FM, Shiraki M (1967) Musculo-aponeurotoc fibromatosis of the shoulder girdle (extra-abdominal desmoid). Cancer 20:1131–1140

    PubMed  CAS  Google Scholar 

  • Greenberg HM, Goebel R, Weichselbaum RR et al. (1981) Radiation therapy in the treatment of aggressive fibromatosis. Int J Radiat Oncol Biol Phys 7:305–310

    PubMed  CAS  Google Scholar 

  • Goy BW, Lee SP, Eilber F et al. (1997) The role of adjuvant radiotherapy in the treatment of resectable desmoid tumors. Int J Radiat Oncol Biol Phys 39:659–665

    PubMed  CAS  Google Scholar 

  • Hoffmann W, Weidmann B, Schmidberger H et al. (1993) Klinik und Therapie der aggressiven Fibromatose (Desmoide). Strahlenther Onkol 169:235–241

    PubMed  CAS  Google Scholar 

  • Kamath SS, Parsons JT, Marcus RB (1996) Radiotherapy for local control of aggressive fibromatosis. Int J Radiat Oncol Biol Phys 36:325–328

    PubMed  CAS  Google Scholar 

  • Karakousis P, Mayordomo J, Zografos GO et al. (1993) Desmoid tumors of the trunk and extremity. Cancer 72:1637–1641

    PubMed  CAS  Google Scholar 

  • Keus RB, Bartelink H (1986) The role of radiotherapy in the treatment of desmoid tumors. Radiother Oncol 7:1–5

    PubMed  CAS  Google Scholar 

  • Kiel KD (1984) Radiation therapy in the treatment of aggressive fibromatoses (desmoid tumors). Cancer 54:2051–2055

    PubMed  CAS  Google Scholar 

  • Kinzbrunner B, Ritter S, Domingo J (1983) Remission of rapidly growing desmoid tumors after tamoxifen. Cancer 52:2201–2204

    PubMed  CAS  Google Scholar 

  • Kirschner MJ, Sauer R (1993) Die Rolle der Radiotherapie bei der Behandlung von Desmoidtumoren. Strahlenther Onkol 169:77–82

    PubMed  CAS  Google Scholar 

  • Klein WA, Miller HH, Anderson M (1987) The use of indomethacin, sulindac and tamoxifen for the treatment of desmoid tumors associated with familial polyposis. Cancer 60:2863–2868

    PubMed  CAS  Google Scholar 

  • Lanari A (1993) Effect of progesterone on desmoid tumors (aggressive fibromatoses). New Engl J Med 309:309–312

    Google Scholar 

  • Leibel SA, Wara WM, Hill D et al. (1983) Desmoid tumors: Local control and patterns of relapse following radiation therapy. Int J Radiat Oncol Biol Phys 9:1167–1171

    PubMed  CAS  Google Scholar 

  • Leithner A, Schnack B, Katterschafka T et al. (2000) Treatment of extra-abdominal desmoid tumors with interferon-alpha with or without tretinoin. J Surg Oncol 73:21–25

    PubMed  CAS  Google Scholar 

  • McCullough WM, Parson JT, van der Griend R et al. (1991) Radiation therapy for aggressive fibro-matosis. J Bone Joint Surg 73A:717–725

    Google Scholar 

  • Miralbell R, Suit HB, Mankin H et al. (1990) Fibromatoses: from postsurgical surveillance to combined surgery and radiation therapy. Int J Radiat Oncol Biol Phys 18:535–540

    PubMed  CAS  Google Scholar 

  • Posner MC, Shiu MH, Newsome JL (1989) The desmoid tumor – not a benign disease. Arch Surg 124:191–196

    PubMed  CAS  Google Scholar 

  • Reitamo JJ, Scheinin TM, Häyvry (1986) The desmoid syndrome. Am J Surg 152:230–237

    Google Scholar 

  • Sherman NE, Romsdahl M, Evans H et al. (1990) Desmoid tumors: a 20 year radiotherapy experience. Int J Radiat Oncol Biol Phys 19:37–40

    PubMed  CAS  Google Scholar 

  • Spear MA, Jennings LC, Mankin HJ (1998) Individualizing management of aggressive fibromatoses. Int J Radiat Oncol Biol Phys 40:637–645

    PubMed  CAS  Google Scholar 

  • Stockdale AD, Cassoni AM, Coe MA et al. (1998) Radiotherapy and conservative therapy in management of musculoaponeurotic fibromatosis. Int J Radiat Oncol Biol Phys 15:851–857

    Google Scholar 

  • Suit HD (1990) Radiation dose and response of desmoid tumors. Int J Radiat Oncol Biol Phys 9:225–227

    Google Scholar 

  • Suit HD, Spiro I (1999) Radiation treatment of benign mesenchymal disease. Sem Radiat Oncol 9:171–178

    CAS  Google Scholar 

  • Walther E, Hünig R, Zalad S (1998) Behandlung der aggressiven Fibromatose. Orthopädie 17:193–200

    Google Scholar 

  • Wadell WR, Gerner RE (1980) Indimethacin and ascorbate inhibit desmoid tumors. J Surg Oncol 15:85–90

    Google Scholar 

  • Weiss AJ, Lackman RD (1989) Low-dose chemotherapy in desmoid tumors. Cancer 64:1192–1194

    PubMed  CAS  Google Scholar 

  • Wilcken N, Tattersall MH (1991) Endocrine therapy for desmoid tumors. Cancer 68:1384–1388

    PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Harrison LB, Shiu MH et al. (1991) Combined surgical resection and iridium-192 implantation for locally advanced and recurrent desmoid tumors. Cancer 67:380–384

    PubMed  CAS  Google Scholar 

Zu Induratio penis plastica

  • Alth G, Koren H, Gasser G, Eidler R (1985) On the therapy of induratio penis plastica (Peyronie’s disease) by means of radium moulages. Strahlentherapie 161(1):30–34

    PubMed  CAS  Google Scholar 

  • Bruns F, Kardels B, Schäfer U, Schönekäs K, Willich N (1999) Strahlentherapie bei Induratio penis plastica. Röntgenpraxis 52:33–37

    PubMed  CAS  Google Scholar 

  • Feder BH (1971) Peyronie’s disease. J Am Geriatr Soc 19:947–951

    PubMed  CAS  Google Scholar 

  • Hauck EW, Weidner W (2001) Francois de la Peyronie and the disease named after him. Lancet 357:2049–2051

    PubMed  CAS  Google Scholar 

  • Helvie WW, Ochsner SF (1972) Radiation therapy in Peyronie’s disease. South Med J 65:1192–1196

    PubMed  CAS  Google Scholar 

  • Incrocci L, Wijnmaalen A, Slob AK et al. (2000) Low-dose radiotherapy in 179 patients with Peyronie’s disease: treatment outcome and current sexual function. Int J Radiat Oncol Biol Phys 47:1353–1356

    PubMed  CAS  Google Scholar 

  • Kelami A (1983) Classification of congenital and acquired penile deviation. Urol Int 38:229–232

    PubMed  CAS  Google Scholar 

  • Martin CL (1972) Long time study of patients with Peyronie’s disease treated with irradiation. AJR Am J Roentgenol 114:492–495

    CAS  Google Scholar 

  • Micke O, Seegenschmiedt MH (2002) German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  • Mira JG, Chahbazian CM, del Regato JA (1989) The value of radiotherapy for Peyronie’s disease: Presentation of 56 new case studies and review of the literature. Int J Radiat Oncol Biol Phys 6:161–166

    Google Scholar 

  • Nesbit RM (1950) Congenital curvature of the phallus. Report of three cases with description of corrective operation. J Urol 93:230–232

    Google Scholar 

  • Pambor M, Schmidt W, Wiesner M, Jahr U (1985) Induratio penis plastica – Ergebnisse nach kombinierter Behandlung mit Röntgenbestrahlung und Tokopherol. Z Klin Med 40:1425–1427

    Google Scholar 

  • Rodrigues CI, Hian Njo, Karim AB (1995) Results of radiotherapy and vitamin E in the treatment of Peyronie’s disease. Int J Radiat Oncol Biol Phys 31:571–574

    PubMed  CAS  Google Scholar 

  • Schubert GE (1991) Anatomy and pathophysiology of Peyronie’s disease and congenital deviation of the penis. Urol Int 47:231–235

    PubMed  CAS  Google Scholar 

  • Viljoen IM, Goedhals L, Doman MJ (1993) Peyronie’s disease: A perspective on the disease and the long-term results of radiotherapy. S Afr Med J 83:19–20

    PubMed  CAS  Google Scholar 

  • Williams JL, Thomas CG (1970) The natural history of Peyronie’s disease. J Urol 103:75–76

    PubMed  CAS  Google Scholar 

  • Wagenknecht LV, Meyer WH, Kiskemann A (1982) Wertigkeit verschiedener Therapieverfahren bei Induratio penis plastica. Urol Int 37:335–348

    PubMed  CAS  Google Scholar 

  • Weisser GW, Schmidt B, Hübener KH, Ahlemann LM, Kordonias D (1987) Die Strahlenbehandlung der Induratio penis plastica. Strahlenther Onkol 163:23–28

    PubMed  CAS  Google Scholar 

Zu Dupuytren-Erkrankung und Ledderhose-Syndrom

  • Adamietz B, Keilholz L, Grünert J, Sauer R (2001) Die Radiotherapie des Morbus Dupuytren im Frühstadium. Langzeitresultate nach einer medianen Nachbeobachtungszeit von 10 Jahren. Strahlenther Onkol 177:604–610

    PubMed  CAS  Google Scholar 

  • Finney R (1955) Dupuytren’s contracture. Brit J Radiol 28:610–613

    PubMed  CAS  Google Scholar 

  • Herbst M, Regler G (1985) Dupuytrensche Kontraktur. Radiotherapie der Frühstadien. Strahlentherapie 161:143–147

    PubMed  CAS  Google Scholar 

  • Hesselkamp J, Schulmeyer M, Wiskemann A (1981) Röntgentherapie der Dupuytrenschen Kontraktur im Stadium I. Therapiewoche 31:6337–6338

    Google Scholar 

  • Keilholz L, Seegenschmiedt MH, Sauer R (1996) Radiotherapy in early stage Dupuytren’s contracture: Initial and longterm results. Int J Radiat Oncol Biol Phys 36:891–897

    PubMed  CAS  Google Scholar 

  • Keilholz L, Seegenschmiedt MH, Born AD, Sauer R (1997) Radiotherapy in the early stage of Dupuytren’s disease: The indications, technic and long-term results. Strahlenther Onkol 173:27–35

    PubMed  CAS  Google Scholar 

  • Köhler AH (1984) Die Strahlentherapie der Dupuytrenschen Kontraktur. Radiobiol Radiother 25:851–853

    Google Scholar 

  • Lukacs S, Braun Falco O, Goldschmidt H (1978) Radiotherapy of benign dermatoses: indications, practice and results. J Dermatol Surg Oncol 4:620–625

    PubMed  CAS  Google Scholar 

  • Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  • Seegenschmiedt MH, Olschewski T, Guntrum F (2001) Radiotherapy optimization in early-stage Dupuytren’s contracture: first results of a randomized clinical study. Int J Radiat Oncol Biol Phys 49:785–798

    PubMed  CAS  Google Scholar 

  • Vogt HJ, Hochschau L (1980) Behandlung der Dupuytrenschen Kontraktur. Münch Med Wschr 122:125–130

    CAS  Google Scholar 

  • Wasserburger K (1956) Zur Therapie der Dupuytrenschen Kontraktur. Strahlentherapie 100:546–560

    PubMed  CAS  Google Scholar 

Zu Keloide und hypertrophe Nar

  • Borok TL, Bray M, Sinclair I et al. (1988) Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys 15:865–870

    PubMed  CAS  Google Scholar 

  • Cosman B, Crikelair GF, Gaulin J et al. (1961) The surgical treatment of keloids. Plast Reconstr Surg 27:335–337

    Google Scholar 

  • Doornbos JF, Stoffel TJ, Hass AC et al. (1990) The role of kilovoltage irradiation in the treatment of keloids. Int J Radiat Oncol Biol Phys 18:833–839

    PubMed  CAS  Google Scholar 

  • Emhamre A, Hammar H (1983) Treatment of keloids with postoperative X-ray irradiation. Dermatologica 167:90

    Google Scholar 

  • Escarmant P, Zimmermann S, Amar A et al. (1993) The treatment of 783 keloid scars by Iridium 192 interstitial irradiation after surgical excision. Int J Radiat Oncol Biol Phys 26:245–251

    PubMed  CAS  Google Scholar 

  • Guix B, Henriquez I, Andres A et al. (2001) Treatment of keloids by high-dose-rate brachytherapy: a seven-year-study. Int J Radiat Oncol Biol Phys 50:167–172

    PubMed  CAS  Google Scholar 

  • Inalsingh CHA (1974) An experience in treating five hundred and one patients with keloids. Johns Hopkins Med J 134:284–286

    PubMed  CAS  Google Scholar 

  • Janssen de Limpens MP (1986) Comparison of the treatment of keloids and hypertrophic scars. Eur J Plast Surg 9:18–21

    Google Scholar 

  • Kovalic JJ, Perez CA (1989) Radiation therapy following keloidectomy: A 20-year experience. Int J Radiat Oncol Biol Phys 17:77–80

    PubMed  CAS  Google Scholar 

  • Lo TCM, Seckel BR, Salzman FA, Wright KA (1990) Single-dose electron beam irradiation in treatment and prevention of keloids and hypertrophic scars. Radiother Oncol 19:267–272

    PubMed  CAS  Google Scholar 

  • Micke O, Seegenschmiedt MH (2002) The German Working Group guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    PubMed  Google Scholar 

  • Ollstein RN, Siegel HW, Gillooley JF et al. (1981) Treatment of keloids by combined surgical excision and immediate postoperative X-ray therapy. Ann Plast Surg 7:281–283

    PubMed  CAS  Google Scholar 

  • Prott FJ, Micke O, Wagner W, Schäfer U, Haverkamp, Willich N (1997) Narbenkeloidprophylaxe durch Bestrahlung mit Strontium-90. MTA 12:425–428

    Google Scholar 

  • Roesler HP, Zapf S, Kuffner HD, Wissen-Siegert I, Kutzner J (1993) Strahlentherapie beim Narbenkeloid. Fortschritte der Medizin 111:46–49

    Google Scholar 

  • Sallstrom KO, Larson O, Heden P et al. (1989) Treatment of keloids with surgical excision and postoperative X-ray radiation. Scand J Plast Reconstr Surg Hand Surg 23:211–214

    PubMed  CAS  Google Scholar 

Zu Sonstige Erkrankungen an Bindegewebe und Haut sowie Hautanhangsgebilden

  • Alafthan O, Holsti LR (1969) Prevention of Gynecomastia by local roentgen irradiation in estrogen treated prostatic carcinomas. Scand J Urol Nephrol 3:183–186

    Google Scholar 

  • Amer M, Diab N, Ramadan A et al. (1988) Therapeutic evaluation for intralesional injection of bleomycin sulfate in 143 resistant warts. J Am Acad Dermatol 18:1313–1316

    PubMed  CAS  Google Scholar 

  • Bunney MH, Nolan MW, Buxton DK et al. (1984) The treatment of resistant warts with intralesional bleomycin: A controlled clinical trial. Br J Dermatol 111:197–199

    PubMed  CAS  Google Scholar 

  • Chou JL, Easley JD, Feldmeier JJ (1988) Effective radiotherapy in palliating mammalgia associated with Gynecomastia after DES therapy. Int J Radiat Oncol Biol Phys 15:749–751

    PubMed  CAS  Google Scholar 

  • Coskey RJ (1984) Treatment of plantar warts in children with a salicylic acid-podophyllin-cantharidin product. Pediatr Dermatl 2:71–73

    CAS  Google Scholar 

  • Fröhlich D, Baaske D, Glatzel M (2000) Radiotherapy of hidradenitis suppurativa – still valid today? Strahlenther Onkol 176:286–289

    PubMed  Google Scholar 

  • Hassenstein E (1986) Die Strahlenbehandlung gutartiger Erkrankungen – Indikationen, Ergebnisse und Technik. Röntgenblätter 39:21–23

    PubMed  CAS  Google Scholar 

  • Manusco JE, Abramow SP, Dimichino BR et al. (1991) Carbon dioxide laser management of plantar verruca: A 6-year follow-up survey. J Foot Surg 30:238–240

    Google Scholar 

  • Metzger H, Junker A, Voss AC (1980) Die Bestrahlung der Brustdrüsen als Prophylaxe der östrogen-induzierten Gynäkomastie beim Prostatakarzinom. Strahlenther Onkol 156:102–104

    CAS  Google Scholar 

  • Seegenschmiedt MH, Katalinic A, Makoski H et al. (2000) Radiation therapy for benign diseases: patterns of care study in Germany. Int J Radiat Oncol Biol Phys 47:195–202

    PubMed  CAS  Google Scholar 

  • Wolf H, Madson PO, Vermund H (1969) Prevention of estrogeninduced Gynecomastia by external irradiation. J Urol 102:607–609

    PubMed  CAS  Google Scholar 

Zu Heterotope Ossifikationen

  • Ahrengart L, Lindgren U (1993) Heterotopic bone after hip arthroplasty. Defining the patient at risk. Clin Orthop 293:153–159

    PubMed  Google Scholar 

  • Alberti W, Quack G, Krischke W, Lommatzsch A, Huyer C, Krahl H (1995) Verhinderung ektoper Ossifikationen nach Totalendoprothese des Hüftgelenks durch Strahlentherapie. Dtsch Med Wschr 120:983–989

    PubMed  CAS  Google Scholar 

  • Almasbakk K, Roysiand P (1977) Does indomethacin prevent postoperative ectopic ossification in total hip replacement? Acta Orthop Scand 48:556

    Google Scholar 

  • Anthony P, Keys H, McCollister-Evarts C, Rubin P, Lush C (1987) Prevention of heterotopic bone formation with early postoperative irradiation in high risk patients undergoing total hip arthroplasty: Comparison of 10 Gy versus 20 Gy schedules. Int Radiat Oncol Biol Phys 13:365–369

    CAS  Google Scholar 

  • Ayers DC, Evarts CM, Parkinson JR (1986) The prevention of heterotopic ossification in high-risk patients by low-dose radiation therapy after total hip arthroplasty. J Bone Joint Surg 68-A:1423–1430

    Google Scholar 

  • Ayers DC, Pellegrini VD, Evarts CM (1991) Prevention of heterotopic ossification in high-risk patients of radiation therapy. Clin Orthop 263:87–93

    PubMed  Google Scholar 

  • Bartels RH, Grotenhuis JA, Van der Spek JA (1991) Symptomatic vertebral hemangiomas. J Neurosurg Sci 35:187–192

    PubMed  CAS  Google Scholar 

  • Bijvoet OLM, Nollen AJG, Sloof TJJH, Feith R (1974) Effect of diphosphonate on para-articular ossification after total hip replacement. Acta Orthop Scand 45:926–934

    PubMed  CAS  Google Scholar 

  • Blount LH, Thomas BJ, Tran L, Selch MT, Sylvester JE, Parker RG (1990) Postoperative irradiation for prevention of heterotopic bone: analysis of different dose schedules and shielding considerations. Int J Radiat Oncol Biol Phys 19:577–581

    PubMed  CAS  Google Scholar 

  • Bosse MJ, Poka A, Reinert CM, Ellwanger F, Slawson R, Mc Devitt ER (1988) Heterotopic bone formation as a complication of acetabular fractures. J Bone Joint Surg 70-A:1231–1237

    Google Scholar 

  • Bremnes RM, Hauge HN, Sagsveen R (1996) Radiotherapy in the treatment of symptomatic vertebral hemangiomas: Technical case report. Neurosurgery 39:1054–1058

    PubMed  CAS  Google Scholar 

  • Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total hip replacement. J Bone Joint Surg 55-A:1629–1632

    Google Scholar 

  • Brunner R, Morscher E, Hünig R (1987) Paraarticular ossification in total hip replacement; An indication for irradiation therapy. Arch Orthop Trauma Surg 106:102–107

    PubMed  CAS  Google Scholar 

  • Caron JC (1976) Para articular ossification in total hip replacement. In: Geschwend N, De Brunner HV (eds) Total Hip Protheses. Bern: 171–185

    Google Scholar 

  • Cella JP, Salvati EA, Sculco TP (1988) Indomethacin for the prevention of heterotopic ossification following total hip arthroplasty. J Arthroplasty 3:229–234

    PubMed  CAS  Google Scholar 

  • Clough JR, Price CGH (1973) Aneurysmal bone cyst: Pathogenesis and long term results of treatment. Clin Orthop 97:52–63

    PubMed  Google Scholar 

  • Conterato DJ, Verner J, Hartsell WF, Murthy AK, Galante JO, Hendrickson FR (1989) Prevention of heterotopic bone formation, comparison of 5 Gy versus 10 Gy. Int J Radiat Oncol Biol Phys 17 (Suppl 1):232

    Google Scholar 

  • Coventry MB, Scanlon PW (1981) The use of radiation of discourage ectopic bone. A nine-year study in surgery about the hip. J Bone Joint Surg 63-A:201–208

    Google Scholar 

  • De Flitch DJ, Stryker JA (1993) Postoperative hip irradiation in prevention of heterotopic ossification: causes of treatment failure. Radiology 188:265–270

    CAS  Google Scholar 

  • De Lee J, Ferrari A, Charnley J (1976) Ectopic bone formation following low friction arthroplasty of the hip. Clin Orthop 121:53

    Google Scholar 

  • Doppman JL, Oldfield EH, Heiss JD (2000) Symptomatic vertebral hemangiomas: Treatment by means of direct intralesional injection of ethanol. Radiology 214:341–348

    PubMed  CAS  Google Scholar 

  • Elmstedt E, Lindholm TS, Nilsson OS, Tornkvist H (1985) Effect of ibuprofen on heterotopic ossification after hip replacement. Acta Orthop Scand 56:25–27

    PubMed  CAS  Google Scholar 

  • Errico TJ, Fetto JF, Waugh TR (1984) Heterotopic ossification: Incidence and relation to trochanteric osteotomy in 100 total hip arthoplasties. Clin Orthop 190:138

    PubMed  Google Scholar 

  • Finerman GA, Stover S (1981) Ossification following hip replacement or spinal cord injury: Two clinical studies with EHDP. Met Bone Dis Relat Res 3:337–342

    CAS  Google Scholar 

  • Fox MW, Onofrio BM (1993) The natural history and management of symptomatic and asymptomatic vertebral hemangiomas. J Neurosurg 78:36–45

    PubMed  CAS  Google Scholar 

  • Garland DE, Betzabe A, Kenneth GV, Vogt JC (1983) Diphosphonate treatment for heterotopic ossification in spinal cord injury patients. Clin Orthop 176:197–200

    PubMed  Google Scholar 

  • Garland DE, Orwin JF (1989) Resection of heterotopic ossification in patients with spinal cord injuries. Clin Orthop 242:169–176

    PubMed  Google Scholar 

  • Garland DE (1991) A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop 263:13–29

    PubMed  Google Scholar 

  • Garland DE (1985) Resection of heterotopic ossification in the adult with head trauma. J Bone Joint Surg 67:1261–1271

    PubMed  CAS  Google Scholar 

  • Goel A, Sharp DJ (1991) Heterotopic bone formation after hip replacement. J Bone Joint Surg 73-B:255–257

    Google Scholar 

  • Goldman AB, DiCarlo EF (1988) Pigmented villonodular synovitis. Diagnosis and differential diagnosis. Radiol Clin North Am 26/6:1327–1347

    Google Scholar 

  • Granowitz SP, D’Antonio J, Mankin HL (1976) The pathogenesis and long-term end results of pigmented villonodular synovitis. Clin Orthop 114:335–351

    PubMed  Google Scholar 

  • Gregoritch S, Chadha M, Pellegrini V, Rubin P, Kantorowicz D (1993) Preoperative irradiation for prevention of heterotopic ossification following prothetic total hip replacement. Preliminary results. Int J Radiat Oncol Phys 27 (Suppl 1):157–158

    Google Scholar 

  • Harrison MJ, Eisenberg MB, Ullman JS et al. (1995) Symptomatic cavernous malformations affecting the spine and spinal cord. Neurosurgery 37:195–205

    PubMed  CAS  Google Scholar 

  • Hedley AK, Leon PM, Douglas HH (1989) The prevention of heterotopic bone formation following total hip arthroplasty using 600 rad in a single dose. Arthroplasty 4:319–325

    CAS  Google Scholar 

  • Hierton C, Blomgren G, Lindgren U (1983) Factors associated with heterotopic bone formation in cemented hip protheses. Acta Orthop Scand 54:698–702

    PubMed  CAS  Google Scholar 

  • Jasty M, Schutzer S, Tepper J, Willett C, Stracher MA, Harris WH (1990) Radiation-blocking shields to localize periarticular radiation precisely for prevention ot heterotopic bone formation around uncemented total hip arthroplasties. Clin Orthop 257:138–145

    PubMed  Google Scholar 

  • Jereb B, Smith J (1980) Giant aneurismal bone cyst of the innominate bone treated by irradiation. Br J Radiol 53:489

    PubMed  CAS  Google Scholar 

  • Kantorowitz DA, Miller GJ, Ferrara JA, Ibbott GS, Fisher R, Ahrens CR (1990) Preoperative versus postoperative irradiation in the prophylaxis of heterotopic bone formation in rats. Int J Radiat Oncol Biol Phys 19:1431–1438

    PubMed  CAS  Google Scholar 

  • Karstens JH, Gehl H-B, Sawdis E, Casser H-R, Löer F (1990) Strahlentherapie – eine wirksame Prophylaxe periartikulärer Verknöcherungen nach Implantation von Hüfttotalendoprothesen. Med Welt 41:1101–1103

    Google Scholar 

  • Kennedy WF, Thomas AG, Chessin H, Gasparini G, Thompson W (1991) Radiation therapy to prevent heterotopic ossification after cementless total hip arthoplasty. Clin Orthop 262:185–191

    PubMed  Google Scholar 

  • Keret D, Harcke HT, Mendez AA, Bowen JR (1990) Heterotopic ossification in central nervous system-injured patients following closed nailing of femoral fractures. Clin Orthop 256:254–259

    PubMed  Google Scholar 

  • Kjaersgaard-Andersen P, Schmidt SA (1986) Indometacin for the prevention of ectopic ossification after hip arthroplasty. Acta Orth Scand 57:12–14

    CAS  Google Scholar 

  • Kleinert H (1967) Über die Telekobalttherapie der Wirbelhämangiome. Strahlenther Onkol 134:504–510

    CAS  Google Scholar 

  • Konski A, Pellegrini V, Poulter C, De Vanny J, Posier R, Evarts CM, Henzler M, Rubin P (1990 a) Randomized trial coaparing single dose versus fractionated Irradiation for prevention of heterotopic bone. Int Radial Oncol Biol Phys 18:1139–1142

    CAS  Google Scholar 

  • Konski A, Weiss C, Rosier R et al. (1990 b) The use of postoperative irradiation for prevention of heterotopic bone after total hip replacement with biological fixation (porous coated) prothesis: an animal model. Int J Radiat Oncol Biol Phys 18:861–865

    PubMed  CAS  Google Scholar 

  • Laredo JD, Reizine D, Bard M et al. (1986) Vertebral hemangiomas. Radiologic evaluation. Radiology 161:183–189

    PubMed  CAS  Google Scholar 

  • Lo TC, Healy WL, Covall DJ, Dotter WE, Pfeiffer BA, Torgerson WR, Wasilewski SA (1988) Heterotopic bone formation after hip surgery: prevention with single-dose postoperative hip irradiation. Radiology 168:851–854

    PubMed  CAS  Google Scholar 

  • Maeda M, Tateishi H, Takaiga et al. (1989) High-energy, lowdose radiation therapy for aneurismal bone cyst. Report of a case. Clin Orthop 243:200

    PubMed  Google Scholar 

  • Marcove RC, Sheth DS, Takemoto S et al. (1995) The treatment of aneurismal bone cyst. Clin Orthop 311:157

    PubMed  Google Scholar 

  • McLaren AC (1990) Prophylaxis with indomethacin for heterotopic bone. J Bone Joint Surg 72-A:245–247

    Google Scholar 

  • McLennan I, Keys HM, Evarts CM, Rubin P (1984) Usefulness of postoperative hip irradiation in the prevention of bone formation in a high risk group of patients. Int J Radiat Oncol Biol Phys 10:49–53

    Google Scholar 

  • McAllister VL, Kendall BE, Bull JWD (1975) Symptomatic vertebral hemangiomas. Brain 98:71–80

    PubMed  CAS  Google Scholar 

  • Metzenroth H, Publig W, Knahr K, Zandl C, Kuchner G, Carda C (1991) Ossifikationsprophylaxe nach Hüfttotalendoprothesen mit Indomethacin und ihr Einfluss auf die Magenschleimhaut. Z Orthop 129:178–182

    PubMed  CAS  Google Scholar 

  • Nobler MP, Higinbotham ML, Phillips RF (1968) The cure of aneurismal bone cyst. Irradiation superior to surgery in analysis of 33 cases. Radiology 90:1185

    PubMed  CAS  Google Scholar 

  • ÓSullivan B, Cummings B, Catton C et al. (1995) Outcome following radiation treatment for high-risk pigmented villonodular synovitis. Int J Radiat Oncol Biol Phys 32:777–786

    Google Scholar 

  • Orzel JA, Rudd TG (1985) Heterotopic bone formation: Clinical laboratory and imaging correlation. J Nucl Med 26:125

    PubMed  CAS  Google Scholar 

  • Padovani R, Acciarri N, Giulioni M et al. (1997) Cavernous angiomas of the spinal district: Surgical treatment of 11 patients. Eur Spine J 6:298–303

    PubMed  CAS  Google Scholar 

  • Pastushyn AI, Slinko EI, Mirzoyeva GM (1998) Vertebral hemangiomas: Diagnosis, management, natural history and clinicopathological correlates in 86 patients. Surg Neurol 50:535–547

    PubMed  CAS  Google Scholar 

  • Pedersen NW, Kristensen SS, Schmidt SA, Pedersen P, Kjaersgaard-Andersen P (1989) Factors associated with heterotopic bone formation following total hip replacement. Arch Orthop Trauma Surg 108:92–95

    PubMed  CAS  Google Scholar 

  • Plasmans CMC, Kuypers WM, Slooff TJHH (1978) The effect of ethane-1-hydroxyl-1, 1-diphosphonic acid (EHDP) on matrix induced ectopic bone formation. Clin Orthop 132:233–243

    PubMed  CAS  Google Scholar 

  • Prakash V, Lin MS, Perkash I (1978) Detection of heterotopic calcification with tc-pyrophosphate in spinal cord injury patients. Clin Nucl Med 3:167–169

    PubMed  CAS  Google Scholar 

  • Raco A, Ciappetta P, Artico M et al. (1990) Vertebral hemangiomas with cord compression: The role of embolization in five cases. Surg Neurol 34:164–168

    PubMed  CAS  Google Scholar 

  • Rades D, Bajrovic A, Alberti A, Rudat V (2002) Is there a doseeffect relationship for the treatment of symptomatic vertebral hemangioma? In: Int J Radiat Oncol Biol Phys 55:178–181

    Google Scholar 

  • Riegler HF, Harris CM (1976) Heterotopic bone formation after total hip arthroplasty. Clin Orthop 117:209

    PubMed  Google Scholar 

  • Ritter MA, Sieber JM (1985) Prophylactic indomethacin for the prevention of heterotopic bone formation following total hip arthroplasty. Clin Orthop 196:217–225

    PubMed  Google Scholar 

  • Ritter MA, Vaughan RB (1977) Ectopic ossifications after total hip arthroplasty; predisposing factors, frequency and effect on results. J Bone Joint Surg 59 A:345–351

    Google Scholar 

  • Russell RCG, Fleisch H (1975) Pyrophosphate and diphosphonate in skeletal metabolism. Clin Orthop 108:241–263

    PubMed  CAS  Google Scholar 

  • Sauer R, Seegenschmiedt MH, Goldmann A, Beck H, Andreas P (1992) Prophylaxe periartikulärer Verknöcherungen nach endoprothetischem Hüftgelenksersatz durch postoperative Bestrahlung. Strahlenth Onkol 168:89–99

    CAS  Google Scholar 

  • Sautter-Bihl ML, Liebermeister E, Heinze HG et al. (1995) The radiotherapy of heterotopic ossifications in para-plegics. The preliminary results. Strahlenther Onkol 171:454–459

    PubMed  CAS  Google Scholar 

  • Schmidt SA, Kjaersgaard-Andersen P, Pedersen NW, Kristensen SS, Pedersen P, Nielsen JB (1988) The use of Indomethacin to prevent the formation of heterotopic bone after total hip replacement. J Bone Joint Surg 70 A:834–838

    Google Scholar 

  • Seegenschmiedt MH, Goldmann AR, Wölfel R, Hohmann D, Beck H, Sauer R (1993 a) Prevention of heterotopic ossification (HO) after total hip replacement: randomized high versus low dose radiotherapy. Radioth Oncol 26:271–274

    CAS  Google Scholar 

  • Seegenschmiedt MH, Goldmann AR, Martus P, Wölfel R, Hohmann D, Sauer R (1993 b) Prophylactic radiation therapy for prevention of heterotopic ossification after hip arthroplasty: results in 141 high-risk hips. Radiology 188:257–264

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Martus P, Goldmann AR et al. (1994) Peroperative vesus postoperative radiotherapiy for prevention of heterotopic ossification: First results of a randomised trial in high-risk patients. Int J Radiat Oncol Biol Phys 30:63–73

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Keilholz L, Martus P, Goldmann A, Wölfel R, Henning F, Sauer R (1997) Prevention of heterotopic ossification about the hip: Final Results of two ran-domised trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys 39:161–171

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Makoski H-Br, Micke O, German Cooperative Group Radiotherapy for Benign Diseases (2001) Benign Diseases: Radiation prophylaxis for heterotopic ossification about the hip joint – a multi-center study. Int J Radiat Oncol Biol Phys 51:756–765

    Google Scholar 

  • Slawson RG, Poka A, Bathon H, Salazar O, Bromback RJ, Burgess AR (1989) The role of post operative radiation in the prevention of hetrotopic ossification in patients with posttraumatic acetabular fracture. Int J Radiat Oncol Biol Phys 17:669–672

    PubMed  CAS  Google Scholar 

  • Sodemann B, Persson PE, Nilsson OS (1988) Prevention of heterotopic ossification by non-steroid anti-inflammatory drugs after total hip arthroplasty. Clin Orthop 237:158–237

    PubMed  Google Scholar 

  • Sylvester JE, Greenberg P, Selch MT, Thomas BJ, Amstutz H (1988) The use of postoperative irradiation for the prevention of heterotopic bone formation after total hip replacement. Int J Radiat Oncol Biol Phys 14:471–476

    PubMed  CAS  Google Scholar 

  • Thomas BJ, Amstutz HC (1985) Results of administration of diphosphonate for prevention of heterotopic ossification after total hip arthroplasty. J Bone Joint Surg 67-A:400–403

    Google Scholar 

  • Tonna EA, Cronkite EF (1961) Autoradiographic studies of cell proliferation in the periosteum of intact and fractured femora of mice utilizing DNA-labeling with H-3 thymidine. Proc Soc Exp Biol Med107:719–721

    PubMed  CAS  Google Scholar 

  • Unni KK, Ivins JC, Beabout JW et al. (1971) Hemangioma, hemangiopericytoma and hemangioendothelioma (angiosarcoma) of bone. Cancer 27:1403–1414

    PubMed  CAS  Google Scholar 

  • Van der Werf GJIM, van Hasselt NGM, Tonino AJ (1985) Radiotherapy in the prevention of recurrence of paraarticular ossification in total hip prosthesis. Arch Orthop Trauma Surg 104:85–88

    PubMed  CAS  Google Scholar 

  • Winkler C, Dornfeld S, Baumann M et al. (1996) Effizienz der Strahlentherapie bei Wirbelhämangiomen. Strahlenther Onkol 172:681–684

    PubMed  CAS  Google Scholar 

  • Wise MW 3d, Robertson ID, Lachiewicz PF et al. (1990) The effect of radiation therapy on the fixation strength of an experimental porous-coated implant in dogs. Clin Orthop 261:276–280

    PubMed  Google Scholar 

  • Wiss DA (1982) Recurrent villonodular synovitis of the knee. Successful treatment with yttrium-90. Clin Orthop Related Res 169:139–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seegenschmiedt, M. (2013). Nichtmaligne Erkrankungen. In: Wannenmacher, M., Wenz, F., Debus, J. (eds) Strahlentherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88305-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88305-0_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88304-3

  • Online ISBN: 978-3-540-88305-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics