Skip to main content

Aerodynamics of Horizontal Axis Wind Turbines

  • Chapter
  • First Online:
Advances in Wind Energy Conversion Technology

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

This chapter reviews the aerodynamic characteristics of horizontal axis wind turbines (HAWTs). While the aerodynamics of wind turbine are relatively complicated in detail, the fundamental operational principle of a HAWT is that the action of the blowing wind produces aerodynamic forces on the turbine blades to rotate them, thereby capturing the kinetic energy contained in the wind and converting this energy into a rotation of the turbine’s shaft. The captured energy is transferred through a gearbox to an electrical power generator, which sends the power into the electrical grid system and so eventually to the consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area of the turbine disk, m2

a :

Axial induction factor, v i /V

C d :

Sectional drag coefficient

\( C_{d_{0}}\) :

Sectional zero-lift drag coefficient

C l :

Sectional lift coefficient

\( C_{l_{\alpha}}\) :

Sectional lift curve slope, rad−1

C P :

Turbine power coefficient, P/0.5ρAV 3

C T :

Turbine thrust coefficient, T/0.5ρAV 3

c :

Airfoil chord, m

F :

Prandtl tip loss factor

k :

Reduced frequency, ωc/2 V

k x :

Longitudinal inflow weighting factor

k y :

Lateral inflow weighting factor

N b :

Number of turbine blades

P W :

Turbine power output, kW

R :

Radius of turbine, m

Re :

Chord Reynolds number, ρV c/μ

r :

Position vector of vortex collocation point, m

r :

Non-dimensional radial position on blade

r 0 :

Non-dimensional blade root cut-out

T :

Rotor thrust, N

t :

Time, s

V :

Velocity vector, ms−1

V ex :

Perturbation or external velocity vector, ms−1

V ind :

Induction velocity vector, ms−1

V :

Free stream velocity vector, ms−1

X TSR :

Tip speed ratio

x, y, z:

Cartesian coordinates, (m, m, m)

α:

Angle of attack, rad

γ :

Yaw misalignment angle of turbine, deg

Γ v :

Vortex strength (circulation), m2 s−1

\(\zeta\) :

Vortex wake age, rad

θ tip :

Blade tip pitch angle, deg

θ tw :

Blade twist rate, deg

κ :

Induced loss factor

λ:

Tip speed ratio, Ω R/V

μ:

Viscosity, kg m−1 s−1

ν :

Kinematic viscosity, m2 s−1

ρ :

Air density, kg m−3

σ :

Solidity, N b c/πR

φ :

Induced angle of attack, rad

ψ :

Azimuthal angle, rad

Ω:

Rotational speed, rad s−1

BEM:

Blade Element Momentum

CFD:

Computational Fluid Dynamics

FVM:

Free Vortex Method

NWS:

Normal Working State

TSR:

Tip Speed Ratio

TWS:

Turbulent Wake State

VRS:

Vortex Ring State

WBS:

Windmill Brake State

References

  1. Paraschivoiu I (2002) Wind Turbine Design: With Emphasis on Darrieus Concept, Ecole Polytechnique de Montréal

    Google Scholar 

  2. Darrieus FM (1931) Turbine Having its Rotating Shaft Transverse to the Flow of Current. US Patent No. 1,834,018

    Google Scholar 

  3. Manwell FJ, McGowan JG, and Rogers AL (2002) Wind Energy Explained, John Wiley & Sons, New York, NY

    Book  Google Scholar 

  4. Fingersh LJ, Simms D, Hand M, Jager, D, Cotrell J, Robinson M, Schreck S, Larwood S (2001) Wind Tunnel Testing of NREL’s Unsteady Aerodynamics Experiment. AIAA Paper 2001-0035, 20th ASME Wind Energy Symposium and the 39th Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  5. Simms D, Schreck S, Hand M, Fingersh L (2001) NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. National Renewable Energy Laboratory Report NREL/TP-500-29494

    Google Scholar 

  6. Coton FN, Wang T, Galbraith RAMcD (2002) An Examination of Key Aerodynamic Modeling Issues Raised by the NREL Blind Comparison. AIAA Paper 2002-0038, 21st ASME Wind Energy Symposium and the 40th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  7. Thresher R (2002) State of the Wind Industry: Technology, Economics & Future Evolution. Presentation by the National Renewable Energy Laboratory

    Google Scholar 

  8. Global Wind Energy Council (2007) Global Wind 2005 Report, 2006

    Google Scholar 

  9. US Department of Energy (2007) Annual Report on US Wind Power Installation, Cost, and Performance Trends: 2006

    Google Scholar 

  10. Leishman JG (2006). Principles of Helicopter Aerodynamics, Cambridge University Press, 2nd Edition, New York, NY

    Google Scholar 

  11. Eggleston DM, Stoddard DM (1987) Wind Turbine Engineering Design, Van Norstrand Reinhold Co., New York, NY

    Google Scholar 

  12. Burton T, Sharpe D, Jenkins N, Bossanyi, E (2001) Wind Energy Handbook. John Wiley & Sons, Ltd., Chichester, England

    Book  Google Scholar 

  13. Frost W, Long BH, Turner RE (1978) Engineering Handbook on the Atmospheric Environment Guidelines for Use in Wind Turbine Generator Development. NASA Technical Paper 1359

    Google Scholar 

  14. Glauert H (1976) Airplane Propellers. In Division L of Aerodynamic Theory, Edited by WF Durand, Springer–Verlag, Berlin, Germany, 1935. Reprinted by Peter Smith, Glouster, MA

    Google Scholar 

  15. Glauert H (1983) Elements of Aerofoil and Airscrew Theory. Cambridge University Press, New York, NY

    Google Scholar 

  16. Glauert H (1926) The Analysis of Experimental Results in the Windmill Brake and Vortex Ring States of an Airscrew. British ARC R & M 1026

    Google Scholar 

  17. Lock CNH, Bateman H, Townend H (1925) An Extension of the Vortex Theory of Airscrews with Applications to Airscrews of Small Pitch and Including Experimental Results. British ARC R & M 1014

    Google Scholar 

  18. Buhl, ML (2004) A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State. NREL/TP-500-36834

    Google Scholar 

  19. Bergy KH (1974) The Lanchester–Betz Limit. Journal of Energy 3(6):382–384

    Article  Google Scholar 

  20. Hansen AC, Laino DJ (1977) Validation Study for AeroDyn and YawDyn Using Phase II Combined Experiment Data. Proceedings of the 16th ASME Wind Energy Symposium and the 35th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  21. Bossanyi EA (2003) GH Bladed Version 3.6 User Manual. Garrad Hassan and Partners Limited Document 2.82/BR/010 Issue 12

    Google Scholar 

  22. McCoy T (2004) Wind Turbine ADAMS Model Linearization Including Rotational and Aerodynamic Effects. Proceedings of 23rd Wind Energy Symposium and the 42nd AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  23. Snel H (2001) Survey of Induction Dynamics Modeling with BEM-Like Codes: Dynamic Inflow and Yawed Flow Modeling Revisited. 20th ASME Wind Energy Symposium and the 39th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  24. Coleman RP, Feingold AM, and Stempin, CW (1945) Evaluation of the Induced Velocity Fields of an Idealized Helicopter Rotor. NACA ARR L5E10, 1945

    Google Scholar 

  25. Schepers JG (1999) An Engineering Model for Yawed Conditions Developed on the Basis of Wind Tunnel Measurements. Report ECN DE: ECN-RX–98-057, Energy Research Center of the Netherlands

    Google Scholar 

  26. Miley SJ (1982) A Catalog of Low Reynolds Number Airfoil Data for Wind Turbines Applications. Rockwell International, Rocky Flats Plant, RFP-3387

    Google Scholar 

  27. Tangler JL (1987) Status of the Special Purpose Airfoil Families. Solar Energy Research Institute, SERI/TP-217-3264

    Google Scholar 

  28. Tangler JL, Somers DM (1995) NREL Airfoil Families for HAWTs. American Wind Energy Association, Windpower ‘95, Washington DC

    Google Scholar 

  29. Clark RN, Davis RG (1991) Performance Changes Caused by Rotor Blade Surface Debris. American Wind Energy Association, Windpower ‘91, Palm Springs, CA

    Google Scholar 

  30. Eggleston DM (1991) Wind Turbine Bug Roughness Sampling and Power Degradation. American Wind Energy Association, Windpower ‘91, Palm Springs, CA

    Google Scholar 

  31. Vermeer LJ, Sørensen JN, Crespo, A (2003) Wind Turbine Wake Aerodynamics. Progress in Aerospace Sciences 39: 467–510

    Article  Google Scholar 

  32. Kocurek D (1987) Lifting Surface Performance Analysis for Horizontal Wind Axis Turbines. Solar Energy Research Institute, SERI/STR-217-3163

    Google Scholar 

  33. Robison DJ, Coton FN, Galbraith RA McD, Vezza, M (1995) Application of a Prescribed Wake Aerodynamic Prediction Scheme to Horizontal Axis Wind Turbines in Axial Flow. Wind Engineering, 19(1):41–51

    Google Scholar 

  34. Coton FN, Wang T (1999) The Prediction of Horizontal Wind Turbine Performance in Yawed Flow Using an Unsteady Prescribed Wake Model. Institute of Mechanical Engineers, Part A, Journal of Power and Energy 213:33–43

    Article  Google Scholar 

  35. Leishman JG, Bhagwat MJ, Bagai A (2003) Free Vortex Methods for Helicopter Rotor Wake Analyses. Journal of Aircraft, 39(5):759–775

    Article  Google Scholar 

  36. Crouse GL, Leishman, JG (1993) A New Method for Improved Free-Wake Convergence in Hover and Low-Speed Forward Flight. 21st Aerospace Sciences Meeting & Exhibit, Reno, NV

    Google Scholar 

  37. Bagai A Leishman JG (1994) Rotor Free-Wake Modeling using a Relaxation Technique – Including Comparisons with Experimental Data. Proceedings of the 50th Annual National Forum of the American Helicopter Society, Washington, DC

    Google Scholar 

  38. Bhagwat MJ, Leishman JG (2001). Stability, Consistency and Convergence of Time-Marching Free-Vortex Rotor Wake Algorithms. Journal of the American Helicopter Society 46(1):59–70

    Article  Google Scholar 

  39. Gupta S. Leishman JG (2004) Stability of Methods in the Free-Vortex Wake Analysis of Wind Turbines. Proceedings of the 23rd ASME Wind Energy Symposium and the 42nd AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  40. Robinson MC, Galbraith RAMcD, Shipley D, Miller M (1995) Unsteady Aerodynamics of Wind Turbines. AIAA Paper 95-0526, 14th ASME Wind Energy Symposium and the 33rd Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  41. Huyer SA, Simms DA, Robinson MC (1996). Unsteady Aerodynamics Associated with a Horizontal-Axis Wind Turbine. AIAA Journal, 34(7):1410–1419

    Article  Google Scholar 

  42. Schreck S, Robinson M, Hand M, Simms D (2000) HAWT Dynamic Stall Response Asymmetries Under Yawed Flow Conditions. AIAA Paper 2000-0040, 19th ASME Wind Energy Symposium and the 38th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  43. Leishman JG (2002) Challenges in Modeling the Unsteady Aerodynamics of Wind Turbines. Wind Energy 5:86–132

    Article  Google Scholar 

  44. Leishman JG, Beddoes TS (1989) A Semi-Empirical Model for Dynamic Stall. Journal of the American Helicopter Society 34(3):3–17

    Google Scholar 

  45. Pierce K, Hansen AC (1995) Prediction of Wind Turbine Rotor Loads Using the Beddoes-Leishman Model for Dynamic Stall. Journal of Solar Energy Engineering, 117:200–204

    Article  Google Scholar 

  46. Gupta S, Leishman JG (2006) Dynamic Stall Modeling of the S809 Aerofoil and Comparison with Experiments. Wind Energy 9(6):521–547

    Article  Google Scholar 

  47. Himmelskamp H (1950) Profile Investigations on a Rotating Propeller. Max-Plank Institut für Stromungsforschung Göttingen, Germany

    Google Scholar 

  48. Young WH, Williams JC (1972) Boundary-Layer Separation on Rotating Blades in Forward Flight. AIAA Journal, 10(12):1613–1619

    Article  Google Scholar 

  49. Madsen H, Christensen H (1990) On the Relative Importance of Rotational, Unsteady and Three-Dimensional Effects on the HAWT Rotor Aerodynamics. Wind Engineering 14 (6):405–415

    Google Scholar 

  50. Snel H (1991) Scaling Laws for the Boundary Layer Flow on Rotating Wind Turbine Blades. 4th IEA Symposium on Aerodynamics for Wind Turbines, Rome

    Google Scholar 

  51. Narramore JC, Vermeland R (1992) Navier–Stokes Calculations of Inboard Stall Delay Due to Rotation. Journal of Aircraft, 29(1):73–78

    Article  Google Scholar 

  52. Dwyer HA, McCroskey WJ (1971) Crossflow and Unsteady Boundary-Layer Effects on Rotating Blades. AIAA Journal, 9(8):1498–1505

    Article  Google Scholar 

  53. Robinson MC, Simms DA, Hand MM, Schreck SJ (1999) Horizontal Axis Wind Turbine Aerodynamics: Three Dimensional, Unsteady and Separated Flow Influences. 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, CA

    Google Scholar 

  54. Schreck SJ, Robinson MC, Hand MM, and Simms DA (2001) Blade Dynamic Stall Vortex Kinematics for a Horizontal Wind Axis Turbine in Yawed Conditions. Journal of Solar Energy Engineering 123:272–281

    Article  Google Scholar 

  55. Corten GP (2000) Inviscid Stall Model. 13th IEA Symposium on Aerodynamics of Wind Turbines, Golden, CO

    Google Scholar 

  56. Fogarty LE (1951) The Laminar Boundary Layer On a Rotating Blade. Journal of the Aeronautical Sciences 18(3):247–252

    Google Scholar 

  57. Corrigan J (1994) Empirical Model for Stall Delay Due to Rotation. American Helicopter Society Aeromechanics Specialist Meeting, San Francisco, CA

    Google Scholar 

  58. Du ZH, Selig MS (1998) A 3-dimensional Stall Delay Model for HAWT Performance Prediction. AIAA Paper 89-0021, 36th AIAA Aerospace Sciences Meeting and Exhibit and 1998 ASME Wind Energy Symposium, Reno, NV

    Google Scholar 

  59. Bierbooms W (1991) A Comparison Between Unsteady Aerodynamic Models. European Wind Energy Conference, Amsterdam, The Netherlands

    Google Scholar 

  60. Snel H, Schepers JG (1991) Engineering Models for Dynamic Inflow Phenomena. European Wind Energy Conference, Amsterdam, The Netherlands

    Google Scholar 

  61. Hansen AC, Butterfield CP (1993) Aerodynamics of Horizontal-Axis Wind Turbines. Annual Review of Fluid Mechanics 25:115–149

    Article  Google Scholar 

  62. Munduate X, Coton FN, Galbraith RA McD (2003) An Investigation of the Aerodynamic Response of a Wind Turbine to Tower Shadow. 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI

    Google Scholar 

  63. Wang T, Coton FN (2001) A High Resolution Tower Shadow Model for Downwind Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics 89:873–892

    Article  Google Scholar 

  64. Duque EPN, van Dam CP, Brodeur RR, Chao DD (1999) Navier–Stokes Analysis of Time-Dependent Flows About a Wind Turbine. 3rd ASME/JSME Joint Fluids Engineering Conference

    Google Scholar 

  65. Duque EPN, Johnson W, van Dam CP, Cortes R, Yee K (2000) Numerical Prediction of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II Combined Experiment Rotor. AIAA Paper 2000-0038, 19th ASME Wind Energy Symposium and the 38th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  66. Duque EPN, Burkland MD, Johnson W (2003) Navier–Stokes and Comprehensive Performance Predictions of the NREL Phase IV Experiment. AIAA Paper 2003-0355, 22nd ASME Wind Energy Symposium and the 41st AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  67. Ekaterinaris JA (1997) Numerical Simulation of Incompressible Two-Bladed Rotor Flow Field. Proceedings of 16th ASME Wind Energy Symposium and the 35th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  68. Duque EPN, van Dam CP, Hughes SC (1999) Navier–Stokes Simulations of the NREL Combined Experiment Phase II Rotor. Proceedings of 18th ASME Wind Energy Symposium and the 37th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  69. Sørenson, NN, Michelsen JA (2000) Aerodynamic Predictions for the Unsteady Aerodynamics Experiment Phase-II at the National Renewable Energy Laboratory. Proceedings of 19th ASME Wind Energy Symposium and the 38th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  70. Baldwin BS, Lomax H (1978) Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257, 16th AIAA Aerospace Sciences Meeting, Huntsville, Alabama

    Google Scholar 

  71. Baldwin BS, Barth TJ (1990) A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows. NASA TM 102847

    Google Scholar 

  72. Spalart PR, Allamaras SR (1992) A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439, 30th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV

    Google Scholar 

  73. Wolfe WP, Ochs SS (1997) Predicting Aerodynamic Characteristics of Typical Wind Turbine Airfoils Using CFD. Sandia National Laboratories SAND96-2345

    Google Scholar 

  74. Chaviaropolous PK (1996) Investigating Dynamic Stall, 3-D and Rotational Effects on Wind Turbine Blades by Means of an Unsteady Quasi-3D Navier–Stokes Solver. Proceedings of 10th IEA Symposium on Aerodynamics of Wind Turbines, Edinburgh, Scotland, pp. 175–182

    Google Scholar 

  75. Langtry R, Gola, J, Menter F (2006) Predicting 2D Airfoil and 3D Wind Turbine Rotor Performance using a Transition Model for General CFD Codes. Proceedings of 25th Wind Energy Symposium and the 44th AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  76. Benjanirat S, Sankar L, Xu G (2003) Evaluation of Turbulence Models for the Prediction of Wind Turbine Aerodynamics. Proceedings of 22nd ASME Wind Energy Symposium and the 41st AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  77. Madsen HA (1998) Application of Actuator Surface Theory on Wind Turbines. Proceedings of the 2nd IEA Symposium on Aerodynamics of Wind Turbines, Lyngby, Denmark

    Google Scholar 

  78. van Holten T (1977) On the Validity of the Lifting Line Concepts in Rotor Analysis. Vertica, vol:1 pp 239–254

    Google Scholar 

  79. van Bussel, GJW (1995) The Aerodynamics of Horizontal Axis Wind Turbine Rotors Explored with Asymptotic Expansion Methods, Ph.D. thesis, Delft University

    Google Scholar 

  80. Hansen MOL, Sørenson NN, Sørenson JN, Michelsen, JA (1997) A Global Navier Stokes Rotor Prediction Model. AIAA Paper 97-0970, 35th Aerospace Sciences Meeting and Exhibit, Reno, NV

    Google Scholar 

  81. Xu G (2001) Computational Studies of Horizontal Axis Wind Turbines. Ph.D. Dissertation, Department of Aerospace Engineering, Georgia Institute of Technology

    Google Scholar 

  82. Benjanirat S, Sankar L (2004) Recent Improvements to a Combined Navier-Stokes Full Potential Methodology for Modeling Horizontal Axis Wind Turbines. Proceedings of 23rd ASME Wind Energy Symposium and the 42nd AIAA Aerospace Sciences Meeting, Reno, NV, pp. 378–385

    Google Scholar 

  83. Tongchitpakdee C, Benjanirat S, Sankar L (2005) Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines Under Yawed Flow Conditions. Proceedings of 24th ASME Wind Energy Symposium and the 43rd AIAA Aerospace Sciences Meeting, Reno, NV

    Google Scholar 

  84. Menter FR (1993) Zonal Two Equation k–ω Model for Aerodynamic Flows. AIAA Paper 93-2906, 24th Fluid Dynamics Conference, Orlando, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gordon Leishman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leishman, J.G. (2011). Aerodynamics of Horizontal Axis Wind Turbines. In: Sathyajith, M., Philip, G. (eds) Advances in Wind Energy Conversion Technology. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88258-9_1

Download citation

Publish with us

Policies and ethics