Skip to main content

Intramembrane Proteolysis by γ-Secretase and Signal Peptide Peptidases

  • Chapter
  • 561 Accesses

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

The amyloid cascade hypothesis describes a series of cumulative events that are initiated by amyloid β-peptide and finally lead to synapse and neuron loss. Obviously, the proteases involved in amyloid β-peptide generation are targets for therapeutic treatment strategies. For the development of a safe therapeutic intervention, however, we must understand the precise physiological functions and the cellular mechanisms involved in substrate recognition, selection and cleavage. Moreover, homologous proteases, whose physiological function could be affected by inhibitors, need to be discovered and assays must be developed to help determine the cross-reactive potential of such inhibitors. Here we will focus on the intramembrane cleavage of the β-amyloid precursor protein, which is performed by the γ-secretase complex. In parallel, the cellular and biochemical properties of other proteases belonging to the same family of GxGD-type aspartyl proteases, the signal peptide peptidase and their homologues, will be described. We present a common, multiple intramembrane cleavage mechanism performed by these proteases and evidence that Alzheimer's disease-associated mutations lead to a partial loss of intramembrane proteolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaert W, De Strooper B (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22: 439–443

    Article  CAS  PubMed  Google Scholar 

  • Annaert WG, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, George-Hyslop PS, Cordell B, Fraser P, De Strooper B (1999) Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 147: 277–294

    Article  CAS  PubMed  Google Scholar 

  • Beher D, Clarke EE, Wrigley JD, Martin AC, Nadin A, Churcher I, Shearman MS (2004) Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. J Biol Chem 279: 43419–43426

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Fass D, Bibi E (2007) Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc Natl Acad Sci USA 104: 462–466

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96: 11041–11048.

    Article  CAS  PubMed  Google Scholar 

  • Capell A, Beher D, Prokop S, Steiner H, Kaether C, Shearman MS, Haass C (2005) Gamma-secretase complex assembly within the early secretory pathway. J Biol Chem 280: 6471–6478

    Article  CAS  PubMed  Google Scholar 

  • Checler F (2001) The multiple paradoxes of presenilins. J Neurochem 76: 1621–1627

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N, Glista M, Rogaeva E, Wakutani Y, Pardossi-Piquard R, Ruan X, Tandon A, Checler F, Marambaud P, Hansen K, Westaway D, St George-Hyslop P, Fraser P (2006) TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 440: 1208–1212

    Article  CAS  PubMed  Google Scholar 

  • Churcher I, Beher D (2005) Gamma-secretase as a therapeutic target for the treatment of Alzheimer's disease. Curr Phamaceut Design 11: 3363–3382

    Article  CAS  Google Scholar 

  • Cupers P, Bentahir M, Craessaerts K, Orlans I, Vanderstichele H, Saftig P, De Strooper B, Annaert W (2001) The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein. J Cell Biol 154: 731–740

    Article  CAS  PubMed  Google Scholar 

  • Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of γ-secretase activity. Nature Cell Biol 5: 486–488

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Yan H, Wu Z, Yan N, Wang Z, Jeffrey PD, Shi Y (2007) Structure of a site-2 protease family intramembrane metalloprotease. Science 318: 1608–1612

    Article  CAS  PubMed  Google Scholar 

  • Fluhrer R, Grammer G, Israel L, Condron MM, Haffner C, Friedmann E, Bohland C, Imhof A, Martoglio B, Teplow DB, Haass C (2006) A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b. Nature Cell Biol 8: 894–896

    Article  CAS  PubMed  Google Scholar 

  • Fluhrer R, Steiner H, Haass C (2008) Intramembrane Proteolysis by gamma-Secretase and related GxGD-type Aspartylproteases. J Biol Chem, in press

    Google Scholar 

  • Fluhrer R, Fukumori A, Martin L, Grammer G, Haug-Kröper M, Klier B, Winkler E, Kremmer E, Condron MM, Teplow DB, Steiner H, Haass C (2008) Intramembrane proteolysis of G×GD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J Biol Chem, in press

    Google Scholar 

  • Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, Parks AL, Xu W, Li J, Gurney M, Myers RL, Himes CS, Hiebsch RD, Ruble C, Nye JS, Curtis D (2002) aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev Cell 3: 85–97

    Article  CAS  PubMed  Google Scholar 

  • Friedmann E, Lemberg MK, Weihofen A, Dev KK, Dengler U, Rovelli G, Martoglio B (2004) Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. JBbiol Chem 279: 50790–50798

    Article  CAS  Google Scholar 

  • Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF, Kuhn PH, Stauffer D, Rovelli G, Martoglio B (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nature Cell Biol 8: 843–848

    Article  CAS  PubMed  Google Scholar 

  • Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Wooley K (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 370: 555–557

    Article  CAS  PubMed  Google Scholar 

  • Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of Notch. Nature Struct Mol Biol 14: 295–300

    Article  CAS  Google Scholar 

  • Goutte C, Tsunozaki M, Hale VA, Priess JR (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Acad Sci USA 99: 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Haass C (2004) Take five-BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J 23: 483–488

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature Rev Mol Cell Biol 8: 101–112

    Article  CAS  Google Scholar 

  • Haass C, Steiner H (2002) Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol 12: 556–562

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993) beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268: 3021–3024

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353–356

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Sanjo N, Chen F, Gu YJ, Shier C, Petit A, Kawarai T, Katayama T, Schmidt SD, Mathews PM, Schmitt-Ulms G, Fraser PE, St George-Hyslop P (2004) Both the sequence and length of the C terminus of PEN-2 are critical for intermolecular interactions and function of presenilin complexes. J Biol Chem 279: 46455–46463

    Article  CAS  PubMed  Google Scholar 

  • Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321 (Pt 2): 265–279

    CAS  PubMed  Google Scholar 

  • Iben LG, Olson RE, Balanda LA, Jayachandra S, Robertson BJ, Hay V, Corradi J, Prasad CV, Zaczek R, Albright CF, Toyn JH (2007) Signal peptide peptidase and gamma-secretase share equivalent inhibitor binding pharmacology. J Biol Chem 282: 36829–36836

    Article  CAS  PubMed  Google Scholar 

  • Kaether C, Lammich S, Edbauer D, Ertl M, Rietdorf J, Capell A, Steiner H, Haass C (2002) Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol 158: 551–561

    Article  CAS  PubMed  Google Scholar 

  • Kaether C, Capell A, Edbauer D, Winkler E, Novak B, Steiner H, Haass C (2004) The presenilin C-terminus is required for ER-retention, nicastrin-binding and gamma-secretase activity. EMBO J 23: 4738–4748

    Article  CAS  PubMed  Google Scholar 

  • Kaether C, Scheuermann J, Fassler M, Zilow S, Shirotani K, Valkova C, Novak B, Kacmar S, Steiner H, Haass C (2007) Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1. EMBO Rep 8: 743–748

    Article  CAS  PubMed  Google Scholar 

  • Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Luckerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO, Zornig M (2007) The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differentiation 14: 1678–1687

    Article  CAS  Google Scholar 

  • Kopan R, Ilagan MX (2004) Gamma-secretase: proteasome of the membrane? Nature Rev Mol Cell Biol 5: 499–504

    Article  CAS  Google Scholar 

  • Kornilova AY, Bihel F, Das C, Wolfe MS (2005) The initial substrate-binding site of gamma-secretase is located on presenilin near the active site. Proc Natl Acad Sci USA102: 3230–3235

    Article  CAS  PubMed  Google Scholar 

  • Krawitz P, Haffner C, Fluhrer R, Steiner H, Schmid B, Haass C (2005) Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J Biol Chem 280: 39515–39523

    Article  CAS  PubMed  Google Scholar 

  • Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53: 45–53

    Article  CAS  PubMed  Google Scholar 

  • LaPointe CF, Taylor RK (2000) The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275: 1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Lazarov VK, Fraering PC, Ye W, Wolfe MS, Selkoe DJ, Li H (2006) From the Cover: Electron microscopic structure of purified, active {gamma}-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci USA 103: 6889–6894

    Article  CAS  PubMed  Google Scholar 

  • Lemberg MK, Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramem-brane proteolysis. Mol Cell 10: 735–744

    Article  CAS  PubMed  Google Scholar 

  • Lemberg MK, Freeman M (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res 17: 1634–1646

    Article  CAS  PubMed  Google Scholar 

  • Lemieux MJ, Fischer SJ, Cherney MM, Bateman KS, James MN (2007) The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Proc Natl Acad Sci USA104: 750–754

    Article  CAS  PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487–501

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Fluhrer R, Reiss K, Kremmer E, Saftig P, Haass C (2008) Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. J Biol Chem 283: 1644–1652

    Article  CAS  PubMed  Google Scholar 

  • McGeehan GM, Becherer JD, Bast RC, Jr., Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S, et al. (1994) Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370: 558–561

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J, Taddei K, Suva D, Verdile G, Fonte J, Fisher C, Gnjec A, Ghika J, Suard F, Mehta PD, McLean CA, Masters CL, Brooks WS, Martins RN (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer's disease. Neurobiol Aging 24: 655–662

    Article  CAS  PubMed  Google Scholar 

  • Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein trans-membrane sequence are critical for the etiology of Abeta42. EMBO J 26: 1702–1712

    Article  CAS  PubMed  Google Scholar 

  • Nyborg AC, Jansen K, Ladd TB, Fauq A, Golde TE (2004a) A signal peptide peptidase (SPP) reporter activity assay based on the cleavage of type II membrane protein substrates provides further evidence for an inverted orientation of the SPP active site relative to presenilin. J Biol Chem 279: 43148–43156

    Article  CAS  Google Scholar 

  • Nyborg AC, Kornilova AY, Jansen K, Ladd TB, Wolfe MS, Golde TE (2004b) Signal peptide peptidase forms a homodimer that is labeled by an active site-directed gamma-secretase inhibitor. J Biol Chem 279: 15153–15160

    Article  CAS  Google Scholar 

  • Ponting CP, Hutton M, Nyborg A, Baker M, Jansen K, Golde TE (2002) Identification of a novel family of presenilin homologues. Human Mol Genet 11: 1037–1044

    Article  CAS  Google Scholar 

  • Prokop S, Shirotani K, Edbauer D, Haass C, Steiner H (2004) Requirement of PEN-2 for stabilization of the presenilin N-/C-terminal fragment heterodimer within the gamma-secretase complex. J Biol Chem 279: 23255–23261

    Article  CAS  PubMed  Google Scholar 

  • Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G, Hirotani N, Horikoshi Y, Kametani F, Maeda M, Saido TC, Wang R, Ihara Y (2005) Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci 25: 436–445

    Article  Google Scholar 

  • Rawson RB, Zelenski NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chang TY, Brown MS, Goldstein JL (1997) Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1: 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Nyborg AC, Iwata N, Diehl TS, Saido TC, Golde TE, Wolfe MS (2006) Signal peptide peptidase: biochemical properties and modulation by nonsteroidal antiinflammatory drugs. Biochemistry 45: 8649–8656

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Diehl TS, Narayanan S, Funamoto S, Ihara Y, De Strooper B, Steiner H, Haass C, Wolfe MS (2007) Active gamma-secretase complexes contain only one of each component. J Biol Chem 282: 33985–33993

    Article  CAS  PubMed  Google Scholar 

  • Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Sell Sci 112 (Pt 21): 3603–3617

    CAS  Google Scholar 

  • Selkoe D, Kopan R (2003) Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26: 565–597

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, Ball H, Dann CE, 3rd, Sudhof T, Yu G (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122: 435–447

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Kostka M, Romig H, Basset G, Pesold B, Hardy J, Capell A, Meyn L, Grim MG, Baumeister R, Fechteler K, Haass C (2000) Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nature Cell Biol 2: 848–851

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Than M, Bode W, Haass C (2006) Pore-forming scissors? A first structural glimpse of gamma-secretase. Trends Biochem Sci 31: 491–493

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Hayashi I, Tominari Y, Rikimaru K, Morohashi Y, Kan T, Natsugari H, Fukuyama T, Tomita T, Iwatsubo T (2003) Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem 278: 18664–18670

    Article  CAS  PubMed  Google Scholar 

  • Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190

    Article  CAS  PubMed  Google Scholar 

  • Tsachaki M, Ghiso J, Rostagno A, Efthimiopoulos S (2008) BRI2 homodimerizes with the involvement of intermolecular disulfide bonds. Neurobiol Aging, in press

    Google Scholar 

  • Vassalli P (1992) The pathophysiology of tumor necrosis factors. Ann Rev Immunol 10: 411–452

    Article  CAS  Google Scholar 

  • Vetrivel KS, Zhang X, Meckler X, Cheng H, Lee S, Gong P, Lopes KO, Chen Y, Iwata N, Yin KJ, Lee JM, Parent AT, Saido TC, Li YM, Sisodia SS, Thinakaran G (2008) Evidence that CD147 modulation of Abeta levels is mediated by extracellular degradation of secreted Abeta. J Biol Chem, in press

    Google Scholar 

  • Wang J, Beher D, Nyborg AC, Shearman MS, Golde TE, Goate A (2006a) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J Neurochem 96: 218–227

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Ha Y (2006b) Crystal structure of a rhomboid family intramembrane protease. Nature 444: 179–180

    Article  CAS  Google Scholar 

  • Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414: 212–216

    Article  CAS  PubMed  Google Scholar 

  • Weihofen A, Martoglio B (2003) Intramembrane-cleaving proteases: controlled liberation of functional proteins and peptides from membranes. Trends Cell Biol 13: 71–78

    Article  CAS  PubMed  Google Scholar 

  • Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296: 2215–2218

    Article  CAS  PubMed  Google Scholar 

  • Weihofen A, Lemberg MK, Friedmann E, Rueeger H, Schmitz A, Paganetti P, Rovelli G, Martoglio B (2003) Targeting presenilin-type aspartic protease signal peptide peptidase with gamma-secretase inhibitors. J Biol Chem 278: 16528–16533

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305: 1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398: 513–517

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S, Shi Y (2006) Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nature Struct Mol Biol 13: 1084–1091

    Article  CAS  Google Scholar 

  • Yamasaki A, Eimer S, Okochi M, Smialowska A, Kaether C, Baumeister R, Haass C, Steiner H (2006) The GxGD motif of presenilin contributes to catalytic function and substrate identification of gamma-secretase. J Neurosci 26: 3821–3828

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6: 1355–1364.

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407: 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zhou H, Walian PJ, Jap BK (2005) CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer's disease amyloid beta-peptide production. Proc Natl Acad Sci USA102: 7499–7504

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fluhrer, R., Haass, C. (2009). Intramembrane Proteolysis by γ-Secretase and Signal Peptide Peptidases. In: George-Hyslop, P.H.S., Mobley, W.C., Christen, Y. (eds) Intracellular Traffic and Neurodegenerative Disorders. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87941-1_2

Download citation

Publish with us

Policies and ethics