Skip to main content

Spatial Abstraction: Aspectualization, Coarsening, and Conceptual Classification

  • Conference paper
Book cover Spatial Cognition VI. Learning, Reasoning, and Talking about Space (Spatial Cognition 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5248))

Included in the following conference series:

Abstract

Spatial abstraction empowers complex agent control processes. We propose a formal definition of spatial abstraction and classify it by its three facets, namely aspectualization, coarsening, and conceptual classification. Their characteristics are essentially shaped by the representation on which abstraction is performed. We argue for the use of so-called aspectualizable representations which enable knowledge transfer in agent control tasks. In a case study we demonstrate that aspectualizable spatial knowledge learned in a simplified simulation empowers strategy transfer to a real robotics platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobbs, J.R.: Granularity. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI), pp. 432–435 (1985)

    Google Scholar 

  2. Bittner, T., Smith, B.: A taxonomy of granular partitions. In: Montello, D. (ed.) Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science (COSIT), pp. 28–43. Springer, Berlin (2001)

    Google Scholar 

  3. Mackaness, W.A., Chaudhry, O.: Generalization and symbolization. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS (2008)

    Google Scholar 

  4. Klippel, A., Richter, K.F., Barkowsky, T., Freksa, C.: The cognitive reality of schematic maps. In: Meng, L., Zipf, A., Reichenbacher, T. (eds.) Map-based Mobile Services – Theories, Methods and Implementations, pp. 57–74. Springer, Berlin (2005)

    Google Scholar 

  5. Herskovits, A.: Schematization. In: Olivier, P., Gapp, K.P. (eds.) Representation and Processing of Spatial Expressions, pp. 149–162. Lawrence Erlbaum Associates, Mahwah (1998)

    Google Scholar 

  6. Stell, J.G., Worboys, M.F.: Generalizing graphs using amalgamation and selection. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999. LNCS, vol. 1651, pp. 19–32. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Bertel, S., Vrachliotis, G., Freksa, C.: Aspect-oriented building design: Toward computer-aided approaches to solving spatial contraint problems in architecture. In: Allen, G.L. (ed.) Applied Spatial Cognition: From Research to Cognitive Technology, pp. 75–102. Lawrence Erlbaum Associates, Mahwah (2007)

    Google Scholar 

  8. Moravec, H.P., Elfes, A.E.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St. Louis, MO (1985)

    Google Scholar 

  9. Gutmann, J.S., Weigel, T., Nebel, B.: A fast, accurate and robust method for self-localization in polygonal environments using laser range finders. Advanced Robotics 14(8), 651–667 (2001)

    Article  Google Scholar 

  10. Roberts, F.S.: Tolerance geometry. Notre Dame Journal of Formal Logic 14(1), 68–76 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. In: Adaptive Computation and Machine Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Konidaris, G.D., Barto, A.G.: Building portable options: Skill transfer in reinforcement learning. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI) (2007)

    Google Scholar 

  13. Taylor, M.E., Stone, P.: Cross-domain transfer for reinforcement learning. In: Proceedings of the Twenty Fourth International Conference on Machine Learning (ICML 2007), Corvallis, Oregon (2007)

    Google Scholar 

  14. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning and advice taking. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 425–436. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  16. Thrun, S., Schwartz, A.: Finding structure in reinforcement learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference, vol. 7. MIT Press, Cambridge (1995)

    Google Scholar 

  17. Frommberger, L.: A generalizing spatial representation for robot navigation with reinforcement learning. In: Proceedings of the Twentieth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2007), Key West, FL, USA, pp. 586–591. AAAI Press, Menlo Park (2007)

    Google Scholar 

  18. Goyal, R.K., Egenhofer, M.J.: Consistent queries over cardinal directions across different levels of detail. In: Tjoa, A.M., Wagner, R., Al-Zobaidie, A. (eds.) Proceedings of the 11th International Workshop on Database and Expert System Applications, Greenwich, UK, pp. 867–880 (2000)

    Google Scholar 

  19. Schlieder, C.: Representing visible locations for qualitative navigation. In: Carrete, N.P., Singh, M.G. (eds.) Qualitative Reasoning and Decision Technologies, Barcelona, Spain, pp. 523–532 (1993)

    Google Scholar 

  20. Frommberger, L.: Generalization and transfer learning in noise-affected robot navigation tasks. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 508–519. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Talmy, L.: How language structures space. In: Pick Jr., H.L., Acredolo, L.P. (eds.) Spatial Orientation: Theory, Research, and Application. Plenum, New York (1983)

    Google Scholar 

  22. Porta, J.M., Celaya, E.: Reinforcement learning for agents with many sensors and actuators acting in categorizable environments. Journal of Artificial Intelligence Research 23, 79–122 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Nora S. Newcombe Peter Gärdenfors Stefan Wölfl

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frommberger, L., Wolter, D. (2008). Spatial Abstraction: Aspectualization, Coarsening, and Conceptual Classification. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds) Spatial Cognition VI. Learning, Reasoning, and Talking about Space. Spatial Cognition 2008. Lecture Notes in Computer Science(), vol 5248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87601-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87601-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87600-7

  • Online ISBN: 978-3-540-87601-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics