Skip to main content

Rapid Detection and Identification with Molecular Methods

  • Chapter
Biology of Microorganisms on Grapes, in Must and in Wine

A prerequisite for the biochemical and physiological investigation of microorganisms is the isolation and management of pure cultures. Nevertheless, most of the environmental microorganisms are graded as “yet-not-cultivable” because the nutritional requirements are unknown or they could not be isolated due to the fact that they are overgrown by faster growing microorganisms of the same habitat. In addition to plating techniques, isolation without cultivation and analysis of microbes could be performed by micromanipulation techniques or the application of optical tweezers followed by the utilization of PCR based technologies. Many different phenotypic and genotypic methods are presently being applied for microbial identification and classification. Several of these methods are suitable for the simultaneous detection on species level, like the analysis of the rRNA genes. Strain-related fingerprint techniques like RFLP-PFGE, nSAPD-, or RAPD PCR are dependent on the purity of the culture and its genomic DNA. They are not suitable for simultaneous detection. In this chapter isolation techniques and an assortment of different molecular biological methods concerning identification on the species and strain level of grape-, must-, and wine-related microorganisms are described. In general, advances in molecular biology providing new insights into the wonderfully complex conversion of grape juice to wine and the microbial ecology of winemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  • Andrei A, Zervos MJ (2006) The application of molecular techniques to the study of hospital infection. Arch Pathol Lab Med 130:662–668

    PubMed  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane Y (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  PubMed  CAS  Google Scholar 

  • Bakoss P (1970) Cloning of leptospires by micromanipulator. Bull World Health Organ 43:599–601

    PubMed  CAS  Google Scholar 

  • Barros RR, Carvalho MDGS, Peralta JM, Facklam RR, Teixeira LM (2001) Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J Clin Microbiol 39:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Beck P, Huber R (1997) Detection of cell viability in cultures of hyperthermophiles. FEMS Microbiol Lett 147:1114

    Google Scholar 

  • Bellis M, Pagès M, Roizès G (1987) A simple and rapid method for preparing yeast chromsomes for pulse field gel electrophoresis. Nucleic Acids Res 15:6749

    Article  PubMed  CAS  Google Scholar 

  • Birren B, Lai E (1994) Rapid pulsed field separation of DNA molecules up to 250 kb. Nucleic Acids Res 22:5366–5370

    Article  PubMed  CAS  Google Scholar 

  • Blasco L, Ferrer S, Pardo I (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol Lett 225:115–123

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JW, Skerman VBD (1968) Production of axenic cultures of soilborne and endophytic bluegreen algae. J Gen Microbiol 54:299–306

    PubMed  CAS  Google Scholar 

  • Bradford D, Hugenholtz P, Seviour EM, Cunningham MA, Stratton H, Seviour RJ, Blackall LL (1996) 16S rRNA analysis of isolates obtained from gram-negative, filamentous bacteria micromanipulated from activated sludge. Syst Appl Microbiol 19:334–343

    Google Scholar 

  • Claus H, Rötlich H, Filip Z (1992) DNA fingerprints of Pseudomonas spp. using rotating field electrophoresis. Microb Releases 1:11–16

    PubMed  CAS  Google Scholar 

  • Claus H, Jackson TA, Filip Z (1995) Characterization of Serratia entomophila strains by genomic DNA fingerprints and plasmid profiles. Microbiol Res 150:159–166

    CAS  Google Scholar 

  • Cocolin L, Pepe V, Comitini F, Comi G, Ciani M (2004) Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res 5:237–245

    Article  PubMed  CAS  Google Scholar 

  • Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167

    Article  PubMed  CAS  Google Scholar 

  • Daniel P, de Weale E, Hallet JN (1993) Optimization of transverse alternating field electrophoresis for strain identification of Leuconostoc oenos. Appl Microbiol Biotechnol 38:638–641

    Article  CAS  Google Scholar 

  • Delaherche A, Claisse O, Lonvaud-Funel A (2004) Detection and quantification of Brettanomyces bruxellensis and ‘ropy’ Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J Appl Microbiol 97:910–915

    Article  PubMed  CAS  Google Scholar 

  • Divol B, Miot-Sertier C, Lonvaud-Funel A (2006) Genetic characterization of strains of Saccharomyces cerevisiae responsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol 100:516–526

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich J (2002) Fluorescence in situ hybridization (FISH) and single cell micro-manipulation as novel applications for identification and isolation of new Oenococcus strains Yeast–Bacteria Interactions Lallemand. Langenlois 10:33–37

    Google Scholar 

  • Fröhlich J, König H (1998) Verfahren und Gerät zur Isolierung von aeroben und anaeroben prokaryotischen Einzelzellen bzw Klonen aus Misch und Reinkulturen. Patent application DE 198 08 969 C2

    Google Scholar 

  • Fröhlich J, König H (1999a) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257

    Google Scholar 

  • Fröhlich J, König H (1999b) Ethidium bromide:a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Methods 35:121–127

    Article  Google Scholar 

  • Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    PubMed  Google Scholar 

  • Fröhlich J, Pfannebecker J (2007) Species-independent DNA Fingerprint analysis with primers derived from the NotI identification Sequence. Patent WO002007131776

    Google Scholar 

  • Fröhlich J, Kahle D, König H (1998a) Isolation of single bacteria from mixed populations with the aid of a micromanipulator. Biospectrum (special volume):110

    Google Scholar 

  • Fröhlich J, König H, Kahle D (1998b) Isolation of microorganisms. BioNews (Eppendorf) 10:4 Fröhlich J, Salzbrunn U, König H (2002) Neue Anwendungen der Mikromanipulation zur Analyse komplexer, mikrobieller Lebensgemeinschaften. Biospektrum 1:43–46

    Google Scholar 

  • Fuchs BM, Glöckner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 8:3603–3607

    Article  Google Scholar 

  • Fuchs B, Syutsubo K, Ludwig W, Amann R (2001) In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 67:961–968

    Article  PubMed  CAS  Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine Microbiology. Practical Applications and Procedures. Springer, Heidelberg

    Google Scholar 

  • Gafan GP, Spratt DA (2005) Denaturing gradient gel electrophoresis gel expansion (DGGEGE) — an attempt to resolve the limitations of co-migration in the DGGE of complex polymicrobial communities. FEMS Microbiol Lett 253:303–307

    PubMed  CAS  Google Scholar 

  • Giudici P, Caggia C, Pulvirenti A, Rainieri S (1998) Karyotyping of Saccharomyces strains with different temperature profiles. J Appl Microbiol 84:811–819

    Article  PubMed  CAS  Google Scholar 

  • Glover RLK, Abaidoo RC, Jakobsen M, Jespersen L (2005) Biodiversity of Saccharomyces cerevisiae isolated from a survey of pito production sites in various parts of Ghana. Syst Appl Microbiol 28:755–761

    Article  PubMed  CAS  Google Scholar 

  • Guerrini S, Bastianini A, Blaiotta G, Granchi L, Moschetti G, Coppola S, Romano P, Vincenzini M (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int J Food Microbiol 83:1–14

    Article  PubMed  CAS  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega M (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘Flor’ film ageing of dry Sherry-type wines. Yeast 13:101–117

    Article  PubMed  CAS  Google Scholar 

  • Gurtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16

    PubMed  CAS  Google Scholar 

  • Hamilton WJ (1978) The isolation and cultivation of a single spore using a sterile disposable petri dish and a micromanipulator. Med Lab Sci 35:405

    PubMed  CAS  Google Scholar 

  • Harbeck MC, Rothenberg PL (1995) A technique for isolating single cells for analysis by reverse transcription polymerase chain reaction. Anal Biochem 230:193–196

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Arai R, Tada S, Taguchi H, Ogawa Y (2007) Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method. Food Microbiol 24:778–785

    Article  PubMed  CAS  Google Scholar 

  • Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2:1–8

    Article  CAS  Google Scholar 

  • Hierro N, Esteve-Zarzoso B, González A, Mas A, Guillamón JM (2006) Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol 72:7148–7155

    Article  PubMed  CAS  Google Scholar 

  • Hierro N, Esteve-Zarzoso B, Mas A, Guillamón JM (2007) Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res 7:1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Hirschhäuser S, Fröhlich J (2007) Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. Int J Food Microbiol 118:151–157

    Article  PubMed  CAS  Google Scholar 

  • Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett 244:165–171

    Article  PubMed  CAS  Google Scholar 

  • Huber R (1999) Die Laserpinzette als Basis für Einzelzellkultivierungen. Biospektrum 4:289–291

    Google Scholar 

  • Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:5758

    Article  Google Scholar 

  • Huys G, Vananneyt M, D’Haene K, Vankerckhoven V, Goossens H, Swings J (2006) Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res Microbiol 157:803–810

    Article  PubMed  CAS  Google Scholar 

  • Jang SJ, Han HL, Lee SH, Ryu SY, Chaulagain BP, Moon YL, Kim DH, Jeong OY, Shin JH, Moon DS, Park YJ (2005) PFGE-based epidemiological study of an outbreak of Candida tropicalis candiduria:the importance of medical waste as a reservoir of nosocomial infection. Jpn J Infect Dis 58:263–267

    PubMed  CAS  Google Scholar 

  • Jinno Y, Yoshiura K, Niikawa N (1990) Use of psoralen as extinguisher of contaminated DNA in PCR. Nucleic Acids Res 18:6739

    Article  PubMed  CAS  Google Scholar 

  • Johnstone KI (1969) The isolation and cultivation of single organisms. In:Norris JR, Ribbons DW (eds.) Methods in Microbiology, vol. 1. Academic, New York, pp 455–471

    Chapter  Google Scholar 

  • Johnstone KI (1973) Micromanipulation of bacteria. The cultivation of single bacteria and their spores by the agar gel dissection technique. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria:a review and discussion of the practical issues. Ant van Leeuwenhoek 73:169–187

    Article  CAS  Google Scholar 

  • Kelly WJ, Huang CM, Asmundson RV (1993) Comparison of Leuconostoc oenos strains by pulsed-field gel electrophoresis. Appl Environ Microbiol 59:3969–3972

    PubMed  CAS  Google Scholar 

  • Kirkpatrick FH, Dumals MM, White HW, Giseley KB (1993) Influence of the agarose matrix in pulsed-field electrophoresis. Electrophoresis 14:349–354

    Article  PubMed  CAS  Google Scholar 

  • Krämer J (1997) Lebensmittel-Mikrobiologie. Ulmer, Stuttgart

    Google Scholar 

  • Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72:5311–5317

    Article  PubMed  CAS  Google Scholar 

  • Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux M, Prèvost H, Cavin JF, Diviés C (1993) Recognition of Leuconostoc oenos strains by the use of DNA restriction profiles. Appl Microbiol Biotechnol 39:547–552

    Article  PubMed  CAS  Google Scholar 

  • Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176

    Article  PubMed  CAS  Google Scholar 

  • Lechiancole T, Blaiotta G, Messina D, Fusco V, Villani F, Salzano G (2006) Evaluation of intra-specific diversities in Oenococcus oeni through analysis of genomic and expressed DNA. Syst Appl Microbiol 29:375–381

    Article  PubMed  CAS  Google Scholar 

  • Le Jeune C, Lollier M, Demuyter C, Erny C, Legras JL, Aigle M, Masneuf-Pomarède I (2007) Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res 7:540–549

    Article  CAS  Google Scholar 

  • Luchansky JB, Glass KA, Harsono KD, Degnan AJ, Faith NG, Cauvin B, Baccus-Taylor G, Arihara K, Bater B, Maurer AJ, Cassens RG (1992) Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl Environ Microbiol 58:3053–3059

    PubMed  CAS  Google Scholar 

  • Lukácsi G, Takó M, Nyilasi I (2006) Pulsed-field gel electrophoresis:a versatile tool for analysis of fungal genomes. Acta Microbiol Immunol Hung 53:95–104

    Article  PubMed  Google Scholar 

  • Luttermann K, Diessel E, Weidauer M (1998) Device for separation of microobjects. Patent WO 98/03628

    Google Scholar 

  • Malacrinò P, Zapparoli G, Torriani S, Dellaglio F (2003) Adaptation in Amarone wine of indigenous Oenococcus oeni strains differentiated by pulsed-field gel electrophoresis. Ann Microbiol 53:55–61

    Google Scholar 

  • Manzano M, Cocolin L, Longo B, Comi G (2004) PCR—DGGE differentiation of strains of Saccharomyces sensu stricto. Ant van Leeuwenhoek 85:23–27

    Article  CAS  Google Scholar 

  • Manzano M, Cocolin L, Iacumin L, Cantoni C, Comi G (2005) A PCR—TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. Int J Food Microbiol 101:333–339

    Article  PubMed  CAS  Google Scholar 

  • Martinez C, Gac S, Lavin A, Ganga M (2004) Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J Appl Microbiol 96:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:136–141

    Article  PubMed  CAS  Google Scholar 

  • Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893

    Article  PubMed  CAS  Google Scholar 

  • Mitterdorfer G, Mayer HK, Kneifel W, Viernstein H (2002) Clustering of Saccharomyces boulardii strains within the species S. cerevisiae using molecular typing techniques. J Appl Microbiol 93:521–530

    Article  PubMed  CAS  Google Scholar 

  • Mouton C, Reynolds H, Genco RJ (1977) Combined micromanipulation, culture and immunofluorescent techniques for the isolation of the coccal organisms comprising the “corn cob” configuration of human dental plaque. J Biol Buccale 5:321–332

    PubMed  CAS  Google Scholar 

  • Nadal D, Colomer B, Pi a B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950

    PubMed  CAS  Google Scholar 

  • Nakano S, Maeshima H, Matsumura A, Ohno K, Ueda S, Kuwabara Y, Yamada T (2004) A PCR assay based on a sequence-characterized amplified region marker for detection of emetic Bacillus cereus. J Food Prot 67:1694–1701

    PubMed  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Korshunova IV (2001) Genetic identification of cultured Saccharomyces yeasts from Asia. J Gen Appl Microbiol 47:335–338

    Article  CAS  Google Scholar 

  • Naumova ES, Korshunova I V, Jespersen L, Naumov GI (2003) Molecular genetic identification of Saccharomyces sensu stricto strains from African sorghum beer. FEMS Yeast Res 3:177–184

    Article  PubMed  CAS  Google Scholar 

  • Neumann KC, Chadd EH, Liou F, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    Article  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  PubMed  CAS  Google Scholar 

  • Petersen RF, Nilsson-Tillgren T, Piškur J (1999) Karyotypes of Saccharomyces sensu lato species. Int J Syst Bacteriol 49:1925–1931

    PubMed  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol (in press)

    Google Scholar 

  • Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434

    Article  PubMed  CAS  Google Scholar 

  • Phister TG, Rawsthorne H, Lucy Joseph CM, Mills DA (2007) Real-Time PCR assay for detection and enumeration of Hanseniaspora species from wine and juice. Am J Enol Viticult 58:229–233

    CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (eds) (2002) Microbiology, 5th edn. McGraw-Hill, New York, pp 626–632

    Google Scholar 

  • Prüss BM, Francis KP, von Stetten F, Scherer S (1999) Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181:2624–2630

    PubMed  Google Scholar 

  • Puverenti A, Solieri L, De Vero L, Giudici P (2005) Limitations on the use of polymerase chain reaction — restriction fragment length polymorphism analysis of the rDNA NTS2 region for the taxonomic classification of the species Saccharomyces cerevisiae. Can J Microbiol 51:759–764

    Article  Google Scholar 

  • Rawsthorne H, Plister TG (2006) A real-time PCR assay for the enumeration and detection of Zygosaccharomyces bailli from Wine and fruit Juices. Int J Food Microbial 112:1–7

    Article  CAS  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro GF, Côrte-Real M, Johannson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Cell Biol 17:4584–4591

    Article  CAS  Google Scholar 

  • Ribot EM, Fitzgerald C, Kuboto K, Swaminathan B, Barrett TJ (2001) Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J Clin Microbiol 39:1889–1984

    Article  PubMed  CAS  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    Article  PubMed  CAS  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains:taxonomic implications. Int J Syst Evol Microbiol 55:197–207

    Article  PubMed  CAS  Google Scholar 

  • Röder C, König H, Fröhlich J (2007a) Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labelled rDNA probes targeting the 26S rRNA. FEMS Yeast Res 7:1013–1026

    Article  CAS  Google Scholar 

  • Röder C, von Walbrunn C, Fröhlich J (2007b) Detektion und Untersuchung der Verbreitung der Wein-relevanten Schädlingshefe Dekkera (Brettanomyces) bruxellensis in Rheinhessen. Deut Lebensm-Rundsch 103:353–359

    Google Scholar 

  • Sato H, Yanagida F, Shinohara T, Suzuki M, Suzuki K, Yokotsuka K (2001) Intraspecific diversity of Oenococcus oeni isolated during wine-making in Japan. FEMS Microbiol Lett 202:109–114

    Article  PubMed  CAS  Google Scholar 

  • Schütze K, Pösl H, Lahr G (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol 44:735–746

    PubMed  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (1973) Micromanipulator for yeast genetic studies. Appl Microbiol 26:829

    PubMed  CAS  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2002) Genomic diversity with the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Appl Environ Microbiol 68:765–771

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJ, Fitzgerald GF, Stanton C, Ross RP (2006) Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Methods 64:120–125

    Article  PubMed  CAS  Google Scholar 

  • Skerman VBD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297

    PubMed  CAS  Google Scholar 

  • Sly LI, Arunpairojana V (1987) Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation. J Microbiol Methods 6:177–182

    Article  Google Scholar 

  • Spano G, Lonvaud-Funel A, Claisse O, Massa S (2007) In vivo PCR—DGGE analysis of Lactobacillus plantarum and Oenococcus oeni populations in red wine. Curr Microbiol 54:9–13

    Article  PubMed  CAS  Google Scholar 

  • Špirek M, Yang J, Groth C, Petersen RF, Langkjær Naumova ES, Sulo P, Naumov GI, Piškur J (2003) High-rate evolution of Saccharomyces sensu lato chromosomes. FEMS Yeast Res 3:363–373

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sörensen D, Broomer A, Oliveira K, Peery-O'Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941

    Article  PubMed  CAS  Google Scholar 

  • Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel-electrophoresis — criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  • Tenreiro R, Santos MA, Pavela H, Vleira G (1994) Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol 77:271–280

    PubMed  CAS  Google Scholar 

  • Thomsen TR, Nielsen JL, Ramsing NB, Nielsen PH (2004) Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environ Microbiol 6:470–479

    Article  PubMed  CAS  Google Scholar 

  • Thomsen R, Nielsen PS, Jensen TH (2005) Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA 11:1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Valero E, Schuller D, Combon B, Casal M, Dequin S (2005) Dissemination and survival of commercial wine yeast in the vineyard:a large-scale, three-years study. FEMS Yeast Res 5:959–969

    Article  PubMed  CAS  Google Scholar 

  • Valero E, Cambon B, Schuller D, Casal M, Dequin S (2007) Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res 7:317–329

    Article  PubMed  CAS  Google Scholar 

  • Vallejo I, Santos M, Cantoral JM, Collado IG, Rebordinos L (1996) Chromosomal polymorphism in Botrytis cinerea strains. Hereditas 124:31–38

    Article  Google Scholar 

  • Van Belkum A, Struelens M, De Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14:547–560

    Article  PubMed  Google Scholar 

  • Vaughan-Martini A, Martini A, Cardinali G (1993) Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces. Ant van Leeuwenhoek 63:145–156

    Article  CAS  Google Scholar 

  • Versavaud A, Courcoux P, Roulland C, Dulau L, Hallet JN (1995) Genetic diversity and geographical distribution of wild Saccharomyces strains from wine-producing area of Charentes, France. Appl Environ Microbiol 61:3521–3529

    PubMed  CAS  Google Scholar 

  • Wagner L, Lai E (1994) Separation of large DNS molecules with high voltage pulsed field gel electrophoresis. Electrophoresis 15:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Xufre A, Albergaria H, Inácio J, Spencer-Martins I, Girio F (2006) Application of fluorescence in situ hybridization (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108:376–384

    PubMed  CAS  Google Scholar 

  • Zapparoli G, Torriani S, Dellaglio F (1998) Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. FEMS Microbiol Lett 166:325–332

    Article  CAS  Google Scholar 

  • Zapparoli G, Reguant C, Bordons A, Torriani S, Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr Microbiol 40:351–355

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Geiger KH, Ragoussis J, Szalay G (1987) A new electrophoresis apparatus for separating very large DNA molecules. J Clin Chem Clin Biochem 25:578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fröhlich, J., König, H., Claus, H. (2009). Rapid Detection and Identification with Molecular Methods. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_24

Download citation

Publish with us

Policies and ethics