Skip to main content
  • 4729 Accesses

Acetic acid bacteria are strictly aerobic, acidophilic organisms that are famous for their rapid incomplete oxidations. They are the elicitors of various wine faults, mainly the formation of vinegar taste due to direct oxidation of ethanol to acetic acid with acetaldehyde as an intermediate. The complete genome sequence of Gluconobacter oxydans 621H provided rich information on the physiology and biochemistry of acetic acid bacteria. The direct oxidations are done by membrane-bound PQQ or flavin dependent enzyme systems with their active sites facing towards the periplasm. The membrane-bound dehydrogenases feed the electrons derived from the oxidations directly into a short electron transport chain that translocates relatively few protons. Besides the membrane-bound dehydrogenases the organism has an additional set of dehydrogenases located in the cytoplasm. They may function mainly in carbon assimilation. The intermediary metabolism seems to be specialized in providing building blocks for biosynthesis. An Entner-Doudoroff pathway and the pentose-phosphate cycle are present; Glycolysis is incomplete due to a missing phosphofructokinase. As succinate thiokinase and succinate dehydrogenase are missing, there is no closed TCA cycle. Furthermore, there is no possibility for the formation of phosphoenolpyruvate from pyruvate and therefore there is no gluconeogenesis from acetate or lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K (2001) Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes l-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 65:115–125

    Article  PubMed  CAS  Google Scholar 

  • Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653

    PubMed  CAS  Google Scholar 

  • Anthony C (1996) Quinoprotein-catalysed reactions. Biochem J 320(Pt 3):697–711

    PubMed  CAS  Google Scholar 

  • Attwood MM, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72:101–105

    Article  CAS  Google Scholar 

  • Barbe JC, De Revel G, Joyeux A, Bertrand A, Lonvaud-Funel A (2001) Role of botrytized grape micro-organisms in SO2 binding phenomena. J Appl Microbiol 90:34–42

    Article  PubMed  CAS  Google Scholar 

  • Bartowsky EJ, Henschke A (2008) Acetic acid bacteria spoilage of bottled red wine-A review. Int J Food Microbiol 125(1):60–70

    Article  PubMed  CAS  Google Scholar 

  • Bartowsky EJ, Xia D, Gibson RL, Fleet GH, Henschke PA (2003) Spoilage of bottled red wine by acetic acid bacteria. Lett Appl Microbiol 36:307–314

    Article  PubMed  CAS  Google Scholar 

  • Beppu T (1993) Genetic organization of Acetobacter for acetic acid fermentation. Antonie Van Leeuwenhoek 64:121–135

    Article  PubMed  Google Scholar 

  • Chen C, Liu BY (2000) Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol 89:834–839

    Article  PubMed  CAS  Google Scholar 

  • Cho JJ, Hayward C, Rohrbach KG (1980) Nutritional requirements and biochemical activities of pineapple pink disease bacterial strains from Hawaii. Antonie Van Leeuwenhoek 46:191–204

    Article  PubMed  CAS  Google Scholar 

  • Davidson VL (2004) Electron transfer in quinoproteins. Arch Biochem Biophys 428:32–40

    Article  PubMed  CAS  Google Scholar 

  • De Ley J (1963) Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J Gen Microbiol 24:31–50

    Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) Family VI. Acetobacteraceae. In: NR Krieg and JG Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. The Wlliams & Wilkins, Baltimore, MD, pp. 267–278

    Google Scholar 

  • Deppenmeier U, Ehrenreich A (2008) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 60:233–242

    Article  PubMed  CAS  Google Scholar 

  • Dittrich HH (1987) Mikrobiologie des Weines, 2 ed. Ulmer, Stuttgart

    Google Scholar 

  • Drysdale GS, Fleet GH (1988) Acetic acid bacteria in winemaking: a review. Am J Enol Vitic 39:143–154

    CAS  Google Scholar 

  • Elfari M, Ha W, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-d-glu- conic acid. Appl Microbiol Biotechnol 66:668–674

    Article  PubMed  CAS  Google Scholar 

  • Fomenkov A, Xiao JP, Xu SY (1995) Nucleotide sequence of a small plasmid isolated from Acetobacter pasteurianus. Gene 158:143–144

    Article  PubMed  CAS  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ- containing enzymes. Adv Microb Physiol 40:1–80

    Article  PubMed  CAS  Google Scholar 

  • Gosselé F, Swings J, De Ley J (1980) Growth factor requirements of Gluconobacter. Zentralbl Bakteriol Parasitenkd Infekionskr Hyg Abt I Orig Ser C 1:348–350

    Google Scholar 

  • Greenwalt CJ, Steinkraus KH, Ledford A (2000) Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63:976–981

    PubMed  CAS  Google Scholar 

  • Gupta A, Singh K, Qazi N, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    PubMed  CAS  Google Scholar 

  • Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosyn- thetic genes in Gluconobacter oxydans 621H. J Bacteriol 188:7668–7676

    Article  PubMed  CAS  Google Scholar 

  • Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153:499–506

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T (2003) Membrane-bound d-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 — enzymatic and genetic characterization. Biochim Biophys Acta 1647:278–288

    PubMed  CAS  Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribereau-Gayon P (1984) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156

    PubMed  CAS  Google Scholar 

  • Kashima Y, Nakajima Y, Nakano T, Tayama K, Koizumi Y, Udaka S, Yanagida F (1999) Cloning and characterization of ethanol-regulated esterase genes in Acetobacter pasteurianus. J Biosci Bioeng 87:19–27

    Article  PubMed  CAS  Google Scholar 

  • Kersters K, De Ley J (1968) The occurence of the Entner–Doudoroff pathway in bacteria. Antonie van Leeuwenhoek J Microbiol Serol 34:393–408

    Article  CAS  Google Scholar 

  • Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177:2637–2643

    PubMed  CAS  Google Scholar 

  • Kondo K, Horinouchi S (1997a) Characterization of an insertion sequence, IS12528, from Gluconobacter suboxydans. Appl Environ Microbiol 63:1139–1142

    CAS  Google Scholar 

  • Kondo K, Horinouchi S (1997b) Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138

    CAS  Google Scholar 

  • Kondo K, Horinouchi S (1997c) A new insertion sequence IS1452 from Acetobacter pasteur- ianus. Microbiology 143(Pt 2):539–546

    CAS  Google Scholar 

  • Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydroge- nase from Acetobacter pasteurianus. J Bacteriol 177:5048–5055

    PubMed  CAS  Google Scholar 

  • Krahulec J, Kretova M, Grones J (2003) Characterisation of plasmids purified from Acetobacter pasteurianus 2374. Biochem Biophys Res Commun 310:94–97

    Article  PubMed  CAS  Google Scholar 

  • Lambert B, Kersters K, Gossele F, Swings J, De Ley J (1981) Gluconobacters from honey bees. Antonie van Leeuwenhoek 47:147–157

    Article  PubMed  CAS  Google Scholar 

  • Leisinger T (1965) Untersuchungen zur Systematik und Stoffwechsel der Essigsäurebakterien. Zentbl Bakteriol Parasitenkd Infktionskrankh Hyg Abt II:329–376

    Google Scholar 

  • Macauley S, McNeil B, Harvey LM (2001) The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol 21:1–25

    Article  PubMed  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1987) Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim Biophys Acta 894:304–312

    Article  CAS  Google Scholar 

  • Matsushita K, Nagatani Y, Shinagawa E, Adachi O, Ameyama M (1989) Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric Biol Chem 36:247–301

    Google Scholar 

  • Matsushita K, Takahashi K, Takahashi M, Ameyama M, Adachi O (1992) Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methano- licus. J Biochem 111:739–747

    PubMed  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Neijssel OM (1987) PQQ-linked enzymes in enteric bacteria. Microbiol Sci 4:87–90

    PubMed  CAS  Google Scholar 

  • Parmentier S, Arnaut F, Soetaert W, Vandamme EJ (2003) Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Commun Agric Appl Biol Sci 68:255–262

    PubMed  CAS  Google Scholar 

  • Passmore SM, Carr JG (1975) The ecology of acetic acid bacteria with particular reference to cider manufacture. J Appl Bacteriol 38:151–158

    Google Scholar 

  • Pronk JT, Levering R, Olijve W, Van Dijkin JP (1989) Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Micob Technol 11:160–164

    Article  CAS  Google Scholar 

  • Prust C (2004) Entschlüsselung des Genoms von Gluconobacter oxydans 621H — einem Bakterium von industriellem Interesse. Georg-August University, Göttingen,Thesis

    Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke F, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  PubMed  CAS  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

    Article  PubMed  CAS  Google Scholar 

  • Rojas V, Gil J V, Pinaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188

    Article  PubMed  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    PubMed  CAS  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  PubMed  CAS  Google Scholar 

  • Schweiger P, Volland S, Deppenmeier U (2007) Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 13:147–155

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Ichikawa C, Matsuura M, Takata Y, Noguchi Y, Saito Y, Yamashita M (2000) Cloning of a gene for d-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738. J Biosci Bioeng 89:463–468

    Article  PubMed  CAS  Google Scholar 

  • Shinjoh M, Tazoe M, Hoshino T (2002a) NADPH-dependent l-sorbose reductase is responsible for l-sorbose assimilation in Gluconobacter suboxydans IFO 3291. J Bacteriol 184:861–863

    CAS  Google Scholar 

  • Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T (2002b) Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound d-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 66:2314–2322

    Article  CAS  Google Scholar 

  • Sievers M, Swings J (2005) Family II. Acetobacteraceae. In: GM Garrity (ed.), Bergey's Manual of Systematic Bacteriology, vol. 2c. Springer, New York, pp. 41–95

    Google Scholar 

  • Soemphol W, Toyama H, Moonmangmee D, Adachi O, Matsushita K (2007) l-Sorbose reductase and its transcriptional regulator involved in l-sorbose utilization of Gluconobacter frateurii. J Bacteriol 189:4800–4808

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer AH, van Boom JH, Bastiaanse AJ (1963) Metabolism of C2 compounds in Acetobacter aceti. Antonie van Leeuwenhoek J Microbiol Serol 29:393–406

    Article  CAS  Google Scholar 

  • Tamaki T, Horinouchi S, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Nucleotide sequence of the membrane-bound aldehyde dehydrogenase gene from Acetobacter polyoxo- genes. J Biochem 106:541–544

    PubMed  CAS  Google Scholar 

  • Toyama H, Mathews FS, Adachi O, Matsushita K (2004) Quinohemoprotein alcohol dehydroge- nases: structure, function, and physiology. Arch Biochem Biophys 428:10–21

    Article  PubMed  CAS  Google Scholar 

  • Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K (2005) Molecular properties of membrane-bound FAD-containing d-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 69:1120–1129

    Article  PubMed  CAS  Google Scholar 

  • Trcek J, Raspor P, Teuber M (2000) Molecular identification of Acetobacter isolates from submerged vinegar production, sequence analysis of plasmid pJK2-1 and application in the development of a cloning vector. Appl Microbiol Biotechnol 53:289–295

    Article  PubMed  CAS  Google Scholar 

  • Valla S, Coucheron DH, Kjosbakken J (1987). The plasmids of Acetobacter xylinum and their interaction with the host chromosome. Mol Gen Genet 208:76–83

    Article  PubMed  CAS  Google Scholar 

  • Verma V, Felder M, Cullum J, Qazi GN (1994) Characterisation of plasmids from diketogluconic acid producing strains of Gluconobacter oxydans. J Biotechnol 36:85–88

    Article  PubMed  CAS  Google Scholar 

  • White GA, Wang CH (1964a) The dissimilation of glucose and glconate by Acetobacter xylinum. 1. The origin and fate of triose phosphate. Biochem J 90:408–423

    CAS  Google Scholar 

  • White GA, Wang CH (1964b) The dissimilation of glucose and gluconate by Acetobacter xylinum. 2. Pathway evaluation. Biochem J 90:424–433

    CAS  Google Scholar 

  • Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Measde JH, Emerick AW, Bruner R, Ben-Bassat A, Tal R (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A 87:8130–8134

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Elias MD, Matsushita K, Migita CT, Adachi O (2003) Escherichia coli PQQ-contain- ing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins. Biochim Biophys Acta 1647:185–192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrenreich, A. (2009). The Genome of Acetic Acid Bacteria. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_21

Download citation

Publish with us

Policies and ethics