Skip to main content

Investigation of interaction between shock waves and flow disturbances with different shock-capturing schemes

  • Conference paper
Shock Waves

Summary

We simulate transmission of a small-amplitude disturbance wave through a shock wave. Results of our numerical experiments performed with different high-order shock-capturing schemes show that the capability of a scheme to correctly predict the amplification of the disturbances crucially depends on the Riemann solver used in evaluation of numerical fluxes. Incorrectly high amplification rates are produced by the solvers resolving shock waves sharply, with no interior points in numerical profiles of steady shock waves. In particular, both the exact Riemann solver and the popular Roe flux difference splitting demonstrate such unphysical behavior. A possible explanation of such behavior is proposed. More dissipative flow solvers, such as the global Lax–Friedrichs splitting, produce transmission coefficients close to the predictions of linear theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.P. Dyakov: Zh. Eksp. Teor. Fiz. (Sov Phys—JETP) 33 (1957).

    Google Scholar 

  2. S. Yamamoto, H. Daiguji: Computers and Fluids 22(2/3) (1993).

    Google Scholar 

  3. G. Jiang, C.-W. Shu: J. Comput. Phys. 126 (1996).

    Google Scholar 

  4. D.I. Blokhintsev: Dokl. Akad. Nauk SSSR 47 (1945).

    Google Scholar 

  5. J.M. Burgers: Proc. K. Ned. Akad. Wet. 49 (1946).

    Google Scholar 

  6. L.D. Landau, E.M. Lifshitz: Fluid Mechanics, Volume 6 (Course of Theoretical Physics), Butterworth-Heinemann, 2nd edition, 1990.

    Google Scholar 

  7. T.W. Roberts: J. Comput. Phys. 90 (1990).

    Google Scholar 

  8. J.F. McKenzie, K.O. Westphal: Phys. Fluids 11(11) (1968).

    Google Scholar 

  9. M.S. Ivanov et al.: Phys. Fluids 15(6) (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kudryavtsev, A., Khotyanovsky, D., Epshtein, D. (2009). Investigation of interaction between shock waves and flow disturbances with different shock-capturing schemes. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85181-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85181-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85180-6

  • Online ISBN: 978-3-540-85181-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics