Skip to main content
  • 99 Accesses

Abstract

High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM or Z-contrast) has been shown to be remarkably sensitive to atomic number (Z). However, HAADF images are currently formed on an arbitrary intensity scale, thereby limiting the possibility of truly quantitative imaging. Recently, it was reported that a mismatch exists between experimental and simulated image contrast in HAADF STEM [1]. Without an absolute scale, it is impossible to determine the cause of the discrepancy [2]. Additionally, an absolute scale would facilitate composition mapping at atomic resolution. Here we demonstrate that the HAADF detector can measure the incident beam intensity to normalize Z-contrast images onto an absolute intensity scale. We report on a practical approach that ensures that the detector does not saturate and is sufficiently linear over the intensity range of interest. An FEI Titan 80–300 STEM/TEM equipped with a super-twin lens (Cs ∼ 1.2 mm) operating at 300 kV was used for this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. O. Klenov and S. Stemmer, Ultramicroscopy 106, 889 (2006).

    Article  Google Scholar 

  2. D. O. Klenov, S. D. Findlay, L. J. Allen, and S. Stemmer, Phys. Rev. B 76, 014111 (2007).

    Article  ADS  Google Scholar 

  3. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S. (2008). New Approach to Quantitative ADF STEM. In: Luysberg, M., Tillmann, K., Weirich, T. (eds) EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85156-1_65

Download citation

Publish with us

Policies and ethics