Skip to main content

An update on the TEAM project — first results from the TEAM 0.5 microscope, and its future development

  • Conference paper
EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany

Abstract

Recent advances in aberration-correcting electron optics have led to increased resolution, sensitivity and signal to noise in atomic resolution microscopy. Building on these developments, the TEAM project was designed to optimize the electron microscope around aberration-corrected electron optics and to further advance the limits of the instrument and the technique [1]. The vision for the TEAM project is the idea of providing a sample space for electron scattering experiments in a tunable electron optical environment by removing some of the constraints that have limited electron microscopy until now. The resulting improvements in resolution, the increased space around the sample, and the possibility of exotic electron-optical settings will enable new types of experiments. The TEAM microscope will feature unique corrector elements for spherical and chromatic aberrations, a novel AFM-inspired specimen stage, a high-brightness gun and numerous other innovations that will extend resolution down to the half-Angstrom level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence Berkeley National Laboratory, Argonne National Laboratory, Oak Ridge National Laboratory and the FSMRL at the University of Illinois. For more details, see http://ncem.lbl.gov/TEAM-project/index.html

    Google Scholar 

  2. C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E. A. Olson, T. Donchev, E.A. Kenik, A. Lupini, J. Bentley, S. Pennycook, I.M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen, submitted for publication. See also other presentations at this meeting.

    Google Scholar 

  3. The TEAM project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. NCEM is supported under Contract # DE-AC02-05CH11231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahmen, U. et al. (2008). An update on the TEAM project — first results from the TEAM 0.5 microscope, and its future development. In: Luysberg, M., Tillmann, K., Weirich, T. (eds) EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85156-1_2

Download citation

Publish with us

Policies and ethics